<em>Answer:</em>
<em>The contact between lithospheric plates is called a. plate boundary. The center of a mid-ocean ridge is where. new oceanic lithosphere is being created.</em>
Explanation:
<em>The Earth’s lithosphere, which includes the crust and upper mantle, is made up of a series of pieces, or tectonic plates, that move slowly over time. A divergent boundary occurs when two tectonic plates move away from each other. Along these boundaries, earthquakes are common and magma (molten rock) rises from the Earth’s mantle to the surface, solidifying to create new oceanic crust. The Mid-Atlantic Ridge is an example of divergent plate boundaries. When two plates come together, it is known as a convergent boundary. The impact of the colliding plates can cause the edges of one or both plates to buckle up into a mountain ranges or one of the plates may bend down into a deep seafloor trench. A chain of volcanoes often forms parallel to convergent plate boundaries and powerful earthquakes are common along these boundaries. The Pacific Ring of Fire is an example of a convergent plate boundary. At convergent plate boundaries, oceanic crust is often forced down into the mantle where it begins to melt. Magma rises into and through the other plate, solidifying into granite, the rock that makes up the continents. Thus, at convergent boundaries, continental crust is created and oceanic crust is destroyed. Two plates sliding past each other forms a transform plate boundary. One of the most famous transform plate boundaries occurs at the San Andreas fault zone, which extends underwater. Natural or human-made structures that cross a transform boundary are offset—split into pieces and carried in opposite directions. Rocks that line the boundary are pulverized as the plates grind along, creating a linear fault valley or undersea canyon. Earthquakes are common along these faults. In contrast to convergent and divergent boundaries, crust is cracked and broken at transform margins, but is not created or destroyed.</em>
Note that the centripetal force is proportional to the square of the velocity, implying that a doubling of speed will require four times the centripetal force to keep the motion in a circle.
Answer:
Gravitational pull
Explanation:
There are four fundamental forces in nature:
- Gravitational force: it is an attractive force exerted between all objects having mass. Its magnitude is proportional to the product of the masses and inversely proportional to the square of the distance between the objects.
- Electromagnetic force: it is the force exerted between electrically charged object. It can be either attractive ore repulsive. Its magnitude is proportional to the product of the charges and inversely proportional to the square of the distance between the objects.
- Strong nuclear force: it is the force responsible for holding protons and neutrons together in the nuclei of the atoms. It is attractive and acts only on a very short scale.
- Weak nuclear force: it is the force responsible for certain nuclear decay processes (radioactivity).
In this problem, landslides occur when certain masses of terrain are attracted towards the ground - they are attracted because of the gravitational force.
So, the correct answer is
gravitational pull
B. +Q, + W are the correct sign