Your question looks a bit incomplete as you have the same contents in options a) and d). According to your list, I can't see the correct answer, but I can give you one.The difference between the potential energy of the products of the potential energy of the reactants is equal to the enthalpy of the reaction.
Answer:
The concentration of the resulting solution in parts per million is 177.97
Explanation:
Parts per million (ppm), is a unit of measure for concentration that refers to the number of units of the substance per million units of the set.
The concentration in parts per million expressed in mass / mass is calculated by dividing the mass of the solute (ms) by the mass of the solution (md, sum of the mass of the solute and the mass of the solvent), both expressed in the same unit and multiplied by 10⁶ (1 million).

So, being:
- md: 0.089 grams of KI + 500 grams of H₂O= 500.089 grams
Replacing:

ppm= 177.97
<u><em>The concentration of the resulting solution in parts per million is 177.97</em></u>
Answer:
0
Explanation:
There are no unpaired electrons in the given element. It must be noted that for the atom above, we have even numbered electrons. The total electron we are having here is 18.
Now, we must also know that while the s orbital is not degenerate, the P orbital is degenerate. What this mean is that the p orbital is broken down into three different sub orbitals which is the Px , Py and Pz. Hence we can see that there are 6 electrons to enter into the P orbital too.
We can see that all the S orbitals have been completely filled with two electrons alike each. This is also the case for the P orbital as the 3 suborbitals take in 2 each to give a total of six
Answer: Rutherford.
Explanation:
It was the scientist Ernest Rutherford who, by 1911, performed the gold foil experiment in which α particles were shoot to a thin foild of gold.
That experiment showed that although most α particles passed through the thin gold foild, some of them were deviated in small angles and some other were bounced backward.
The conclusion of the experiment was that the atom contained a small dense positively charged nucleous and negative particles (electrons) surroundiing the nucleous. Being the space in between the nucleous and the electrons empty.
Before Rutherford's experiment the model of the atom was that of the plum pudding presented by J.J Thomson, in which the atom was a solid positively charged sphere with embeded negative charge uniformly distributed in it.
Answer: Number 2.
Explanation:
It releases massive amounts of radiation