Answer:
20,000,000 N
Explanation:
First find the acceleration:
a = Δv / Δt
a = (0 − 40 m/s) / 0.010 s
a = -4000 m/s²
Next use Newton's second law to find the force on the car:
F = ma
F = (5000 kg) (-4000 m/s²)
F = -20,000,000 N
According to Newton's third law, the force on the wall is equal and opposite the force on the car.
F = 20,000,000 N
Answer:
E = 4.83 N/ C
Explanation:
If we have a uniform charge sphere we can use the following formulas to calculate the Electric field due to the charge of the sphere:
: Formula (1) To calculate the electric field in the region outside the sphere r ≥ a
Where:
K: coulomb constant (N*m²/C²)
a: sphere radius (m)
Q: Total sphere charge (C)
r : Distance from the center of the sphere to the region where the electric field is calculated (m)
Equivalences
1nC=10⁻⁹C
1cm= 10⁻²m
Data
k= 9*10⁹ N*m²/C²
Q=4nC=4 *10⁻⁹C
D = 26 cm = 26*10⁻²m = 0.26m
a = D/2 = 0.13m
r= R+a = 2.6 m+ 0.13m = 2.73m
Problem development
Magnitude of the electric field at r = 2.73m from the center of the sphere
r>a , We apply the Formula (1) :


E= 4.83 N/ C
The answer is True. Acceleration is a vector quantity.
speed increases with temp maybe