Answer:
carbon dioxide concentration goes down, temperature goes down. Carbon dioxide goes up temp goes up, carbon dioxide is directly related to temperature by insulating it in the earths atmosphere and if there's less of it then the temp would go down.
Explanation:
The element that gains electrons, becomes reduced.
While the one which loses electrons, becomes oxidized.
In this equation,
CH₃OH + Cr₂O₇²⁻---- --> CH₂O + Cr³⁺.
By balancing the equation, we will get:
3CH₃OH + Cr₂O₇²⁻ + 8H⁺ --> 3CH₂O + 2Cr³⁺ + 7H₂O
Here the oxidation state of Cr changes from +6 to +3 that is it is being reduced thus serving as a oxidizing agent while other element retain their charges.
Here Cr₂O₇²⁻ is reduced while CH₃OH is oxidized.
So Cr₂O₇²⁻ serves as a oxidizing agent, while CH₃OH serves as reducing agent .
These are called subscript number.
That is the number below the normal line of test are called subscript number.
This number indicate the indicate the number of atoms of the element present in the chemical formula.
In both of these C₆H₁₂O₆ and H₂O, the number written below the line of the text are called subscript numbers.
Missing in your question :
Ksp of(CaCO3)= 4.5 x 10 -9
Ka1 for (H2CO3) = 4.7 x 10^-7
Ka2 for (H2CO3) = 5.6 x 10 ^-11
1) equation 1 for Ksp = 4.5 x 10^-9
CaCO3(s)→ Ca +2(aq) + CO3-2(aq)
2) equation 2 for Ka1 = 4.7 x 10^-7
H2CO3 + H2O → HCO3- + H3O+
3) equation 3 for Ka2 = 5.6 x 10^-11
HCO3-(aq) + H2O(l) → CO3-2 (aq) + H3O+(aq)
so, form equation 1& 2&3 we can get the overall equation:
CaCO3(s) + H+(aq) → Ca2+(aq) + HCO3-(aq)
note: you could get the overall equation by adding equation 1 to the inverse of equation 3 as the following:
when the inverse of equation 3 is :
CO3-2 (aq) + H3O+ (aq) ↔ HCO3- (aq) + H2O(l) Ka2^-1 = 1.79 x 10^10
when we add it to equation 1
CaCO3(s) ↔ Ca2+(aq) + CO3-2(aq) Ksp = 4.5 x 10^-9
∴ the overall equation will be as we have mentioned before:
when H3O+ = H+
CaCO3(s) + H+(aq) ↔ Ca2+ (aq) + HCO3-(aq) K= 80.55
from the overall equation:
∴K = [Ca2+][HCO3-] / [H+]
when we have [Ca2+] = [HCO3-] so we can assume both = X
∴K = X^2 / [H+]
when we have the PH = 5.6 so we can get [H+]
PH = - ㏒[H+]
5.6 = -㏒[H]
∴[H] = 2.5 x 10^-6
so, by substitution on K expression:
∴ 80.55 = X^2 / (2.5 x10^-6)
∴X = 0.0142
∴[Ca2+] = X = 0.0142
Answer:
A balanced chemical equation follows law of conservation of mass. This law states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form. This means that total mass on the reactant side is equal to the total mass on the product side.