Have a universal record base. Everyone is able to understand the data compiled since the same measurement systems are being used around the world. This is just to simplify all of the information.
Answer:
The percentage of its mechanical energy does the ball lose with each bounce is 23 %
Explanation:
Given data,
The tennis ball is released from the height, h = 4 m
After the third bounce it reaches height, h' = 183 cm
= 1.83 m
The total mechanical energy of the ball is equal to its maximum P.E
E = mgh
= 4 mg
At height h', the P.E becomes
E' = mgh'
= 1.83 mg
The percentage of change in energy the ball retains to its original energy,
ΔE % = 45 %
The ball retains only the 45% of its original energy after 3 bounces.
Therefore, the energy retains in each bounce is
∛ (0.45) = 0.77
The ball retains only the 77% of its original energy.
The energy lost to the floor is,
E = 100 - 77
= 23 %
Hence, the percentage of its mechanical energy does the ball lose with each bounce is 23 %
Answer:
a)F=3 x 10⁻⁷ N
b)x=2.405 m
Explanation:
Given that
m₁=295 kg
m₂=595 kg
d= 4.1 m
a)
m₃=63 kg
r=d/2 = 2.05 m
The force between the mass m₁ and m₃

by putting the values


F₁₃=2.94 x 10⁻⁷ N
The force between the mass m₂ and m₃
by putting the values


F₂₃=5.94 x 10⁻⁷ N
The net force F
F= F₂₃- F₁₃
F=5.94 x 10⁻⁷ N-2.94 x 10⁻⁷ N
F=3 x 10⁻⁷ N
b)
Lest take at distance x from mass m₂ net force is zero.


Form above two equation



x²=2.01(4.1-x)²
x=1.42 (4.1-x)
x=5.82 - 1.42x
x=2.405 m
uhhhh, I think it depends your height or weigh...?