Explanation:
The range <em>R</em> of a projectile is given the equation

The maximum range is achieved when
so our equation reduces to

We can solve for the initial velocity
as follows:

or


To find the maximum altitude H reached by the missile, we can use the equation

At its maximum height H,
so we can write

or

![\:\:\:\:\:\:= \dfrac{[(9.6×10^3\:\text{m/s})\sin{45°}]^2}{2(9.8\:\text{m/s}^2)}](https://tex.z-dn.net/?f=%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%3D%20%5Cdfrac%7B%5B%289.6%C3%9710%5E3%5C%3A%5Ctext%7Bm%2Fs%7D%29%5Csin%7B45%C2%B0%7D%5D%5E2%7D%7B2%289.8%5C%3A%5Ctext%7Bm%2Fs%7D%5E2%29%7D)

Answer:
A. True
Explanation:
This is because these aircraft experiences different types of vibrations which include buffet vibrations and aerodynamic flutter. Buffet vibrations are vibrations caused by an interruption of airflow. Buffet vibrations are usually felt when the aerodynamic brakes are applied.
Aeroelastic flutter is the most dangerous type of vibration. This occurs when energy added to the wings due to airflow is greater than that lost due to damping. Aeroelastic flutter can cause aircraft to fail when the vibrations are large enough.
+2 electron charges = 2x1.6x10^-19Coulombs
After finding acceleration, it is found that 0.02 N of force is acting on the marble
<h3>
What is Force ?</h3>
Force can simply be defined as a pull or push. It is the product of mass and acceleration of the object. It is a vector quantity and it is measured in Newton.
Given that a steel marble with 0.05 kg of mass starts from rest and rolls down a ramp. It travels 0.25 m in 1.2 seconds.
The parameters to consider are;
Before we find the force acting on the marble, let us first find the acceleration by using the formula: s = ut + 1/2at²
Substitute all the parameters into the formula
0.25 = 0 + 1/2 × a × 1.2²
0.25 = 1/2 × a × 1.44
0.25 = 0.72a
a = 0.25/0.72
a = 0.35 m/s²
The force acting on the marble will be ;
F = ma
F = 0.05 × 0.35
F = 0.017
F = 0.02 N
Therefore, the force acting on the marble is 0.02 N
Learn more about Force here: brainly.com/question/388851
#SPJ1
Answer:
a)1815Joules b) 185Joules
Explanation:
Hooke's law states that the extension of a material is directly proportional to the applied force provided that the elastic limit is not exceeded. Mathematically;
F = ke where;
F is the applied force
k is the elastic constant
e is the extension of the material
From the formula, k = F/e
F1/e1 = F2/e2
If a force of 60N causes an extension of 0.5m of the string from its equilibrium position, the elastic constant of the spring will be ;
k = 60/0.5
k = 120N/m
a) To get the work done in stretching the spring 5.5m from its position,
Work done by the spring = 1/2ke²
Given k = 120N/m, e = 5.5m
Work done = 1/2×120×5.5²
Work done = 60× 5.5²
Work done = 1815Joules
b) work done in compressing the spring 1.5m from its equilibrium position will be gotten using the same formula;
Work done = 1/2ke²
Work done =1/2× 120×1.5²
Works done = 60×1.5²
Work done = 135Joules