1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrej [43]
4 years ago
15

If you are rounding a corner on a bicycle, by twisting the handlebars of your bicycle to the right, which direction does the bic

ycle wheel precess? Why? Should you lean inward (to the right) or outward (to the left) to counteract this?
Physics
1 answer:
docker41 [41]4 years ago
3 0

Answer: twisting the handlebar towards the right causes the bicycle wheels to process towards the right. This is because the wheels of the bicycle experiences a resistance opposite to the direction of movement. This resistance reduces the dynamic equilibrium of the bicycle allowing one to change direction easily by shifting the center of mass of the bicycle.

One should lean towards the right so as to move the center of mass of the bicycle towards the right. This aid the whole bicycle to move towards the right.

You might be interested in
The force diagram represents a girl pulling a sled with a mass of 6.0 kg to the left with a force of 10.0 N at a 30.0 degree ang
STatiana [176]

the correct answers are 54N and -1,2m/s^2

6 0
3 years ago
Read 2 more answers
A 115 g hockey puck sent sliding over ice is stopped in 15.1 m by the frictional force on it from the ice.
Hoochie [10]

Answer:

(a) Ff = 0.128 N

(b μk = 0.1135

Explanation:

kinematic analysis

Because the hockey puck  moves with uniformly accelerated movement we apply the following formulas:

vf=v₀+a*t Formula (1)

d= v₀t+ (1/2)*a*t² Formula (2)

Where:  

d:displacement in meters (m)  

t : time in seconds (s)

v₀: initial speed in m/s  

vf: final speed in m/s  

a: acceleration in m/s

Calculation of the acceleration of the  hockey puck

We apply the Formula (1)

vf=v₀+a*t      v₀=5.8 m/s ,  vf=0

0=5.8+a*t

-5.8 = a*t

a= -5.8/t   Equation (1)

We replace a= -5.8/t in the Formula (2)

d= v₀*t+ (1/2)*a*t²   ,  d=15.1 m ,  v₀=5.8 m/s

15.1 = 5.8*t+ (1/2)*(-5.8/t)*t²  

15.1= 5.8*t-2.9*t

15.1= 2.9*t

t = 15.1 / 2.9

t= 5.2 s

We replace t= 5.2 s in the equation (1)

a= -5.8/5.2

a= -1.115 m/s²

(a) Calculation of the  frictional force (Ff)

We apply Newton's second law

∑F = m*a    Formula (3)

∑F : algebraic sum of the forces in Newton (N)

m : mass in kilograms (kg)

a : acceleration in meters over second square (m/s²)

Look at the free body diagram of the  hockey puck in the attached graphic

∑Fx = m*a     m= 115g * 10⁻³ Kg/g = 0.115g    ,  a= -1.12 m/s²

-Ff = 0.115*(-1.115)  We multiply by (-1 ) on both sides of the equation

Ff = 0.128 N

(b) Calculation of the coefficient of friction (μk)

N: Normal Force (N)

W=m*g= 0.115*9.8= 1.127 N : hockey puck  Weight

g: acceleration due to gravity =9.8 m/s²

∑Fy = 0

N-W=0

N = W

N =  1.127 N

μk = Ff/N

μk = 0.128/1.127

μk = 0.1135

8 0
3 years ago
A student measures the speed of yellow light in water to be 2.00x10^8
max2010maxim [7]

NOTE: The given question is incomplete.

<u>The complete question is given below.</u>

A student measures the speed of yellow light in water to be 2.00 x 10⁸ m/s. Calculate the speed of light in air.

Solution:

Speed of yellow light in water (v) = 2.00 x 10⁸ m/s

Refractive Index of water with respect to air (μ) = 4/3

Refractive Index = Speed of yellow light in air / Speed of yellow light in water

Or,  The speed of yellow light in air = Refractive Index × Speed of yellow light in water

or,                                           = (4/3) × 2.00 x 10⁸ m/s

or,                                           = 2.67 × 10⁸ m/s ≈ 3.0 × 10⁸ m/s

Hence, the required speed of yellow light in the air will be 3.0 × 10⁸ m/s.

7 0
3 years ago
An observer sees a full moon in the night sky. What will the Moon's phase be 10 days later?
algol [13]
I'm pretty sure the moon would be a crescent within the 10 day period because it takes about 28 days for the moon to go through the different stages.
5 0
4 years ago
A 11 g plastic ball is moving to the left at 29 m/s. How much work must be done on the ball to cause it to move to the right at
Rasek [7]

Answer:

4.25 J

Explanation:

Given that

mass of plastic ball = 11 g

Mass of plastic ball = 0.011 kg

velocity of ball = 29 m/s

We know that from work power energy theorem

W_{all}=Change\ in\ kinetic\ energy\ of\ system

We know that kinetic energy of moving mass given as

KE=\dfrac{1}{2}mv^2

Now by pitting the values

KE=\dfrac{1}{2}mv^2

KE=\dfrac{1}{2}\times 0.011\times 29^2

KE= 4.25 J

So the work done on the ball is 4.25 J

8 0
4 years ago
Other questions:
  • Driving on asphalt roads entails very little rolling resistance, so most of the energy of the engine goes to overcoming air resi
    13·1 answer
  • PLLLLLLLLLLLZ HELP 15 POINTS
    8·1 answer
  • Point X is midway between the charges. In what section of the line will there be a point where the resultant electric field is z
    9·1 answer
  • In which state of matter are water molecules measured as having the lowest temperature?
    7·2 answers
  • Covert 35000000 miles to meters and show how you got the answer?
    9·1 answer
  • Describe a situation where your body can act as a lightning conductor.
    13·1 answer
  • Same diagram... At which location would it be possible for a LUNAR ECLIPSE to happen? *
    6·2 answers
  • The distance a toy car travels over time is shown in the graph.
    11·1 answer
  • Dbv-qyag-dsc.join this now on meet<br>​
    9·2 answers
  • Hi all, can u please help me in this. I would very appreciate it :)
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!