Answer:
21.28 m
Explanation:
height, h = 71 m
velocity of raft, v = 5.6 m/s
let the time taken by the stone to reach to raft is t.
use second equation of motion for stone

u = 0 m/s, h = 71 m, g = 9.8 m/s^2
71 = 0 + 0.5 x 9.8 x t^2
t = 3.8 s
Horizontal distance traveled by the raft in time t
d = v x t = 5.6 x 3.8 = 21.28 m
Answer: Your answer is<u> 1.36.</u>
Hope this helps!
Answer:
a) 5.851× 10¹⁰m/s²
b) 2.411×10⁻¹¹s
c) 1.70×10⁻¹¹m
d) 1.661×10⁻²⁷KJ
Explanation:
A proton in the field experience a downward force of magnitude,
F = eE. The force of gravity on the proton will be negligible compared to the electric force
F = eE
a= eE/m
= 1.602×10⁻¹⁹ × 610/1.67×10⁻²⁷
= 5.851× 10¹⁰m/s²
b)
V = u + at
u= 0
v= 1.4106m/s
v= (0)t + at
t= v/a
= 1.4106m/s/5.851 ×10¹⁰
= 2.411×10⁻¹¹s
c)
S = ut + at²
= (o)t + 5.851×10¹⁰×(2.411×10⁻¹¹)²
= 1.70×10⁻¹¹m
d)
Ke = 1/2mv²
= (1.67×10⁻²⁷×)(1.4106)²/2
= 1.661×10⁻²⁷KJ
Answer:
The bottom/center of the pendulum
Explanation:
As it swings, the pendulum will have maximum potential energy at the top of its arc.
As it comes back towards the center that potential energy will convert into kinetic energy until it reaches the middle of its swing (when the pendulum is fully vertical) where all potential energy has been converted into kinetic energy.
This is when the kinetic energy is the highest
As it begins to move away from the center of its arc, that kinetic energy will convert into potential energy again, and the process repeats
Answer:
When a ray of light passes through a glass slab of a certain thickness, the ray gets displaced or shifted from the original path. This is called lateral shift/displacement.
Explanation:
.