Answer:
<u>Yes</u>
Explanation:
Remember, <u>Newton's third law of motion;</u> which says in part that <em>"Every action has an equal and opposite reaction."</em>
Hence, in this case, the fact that the doorbell rang out implies that there was another force that was exerted on it; which is, John's finger pressing the doorbell.
In other words, when John uses his fingers to press the doorbell button he applies a force (a mechanical force), and that force results in an opposite reaction; the ringing of the doorbell.
Answer : The enthalpy of the reaction is, -2552 kJ/mole
Explanation :
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
The given enthalpy of reaction is,
The intermediate balanced chemical reactions are:
(1)
(2)
(3)
(4)
Now we have to revere the reactions 1 and multiple by 2, revere the reactions 3, 4 and multiple by 2 and multiply the reaction 2 by 2 and then adding all the equations, we get :
(when we are reversing the reaction then the sign of the enthalpy change will be change.)
The expression for enthalpy of the reaction will be,
Therefore, the enthalpy of the reaction is, -2552 kJ/mole