Answer:
<h3>The answer is 336 kgm/s</h3>
Explanation:
The momentum of an object can be found by using the formula
<h3>momentum = mass × velocity</h3>
From the question
mass = 4 kg
velocity = 84 m/s
We have
momentum = 4 × 84
We have the final answer as
<h3>336 kgm/s</h3>
Hope this helps you
The graph is showing a constant velocity as the line is horizontal. The initial speed is equal to the final speed as there is no changing in acceleration. The second statement is the correct statement
Initial = 2.5 m/s
Final = 2.5 m/s
Answer:
45 N
Explanation:
F= ma (ie force is found by multiplying the mass of the object by its accerelation)
thus, F = 15 X 3 = 45 N
Let the cannonball be thrown at a height of h above ground.
Then the potential energy of the ball is
V = m*g*h
where
m = the mass of the ball
g = 9.8 m/s²
Also, the kinetic energy of the ball is
K = (1/2)mu²
where
u = 5 m/s, the vertical launch velocity.
Ignore wind resistance.
Because the total energy is preserved, the total energy (n the form of only kinetic energy) when the ball strikes the ground is
(1/2)mV²
where V = vertical velocity when the ball strikes the ground.
Expressions for both the initial and final energy are equal regardless of whether the ball s thrown downward or upward.
Therefore there is no difference in the landing speed.
Answer: There is no difference.
Answer:
malesef herşey ingilizce yazıyor hiçbirşey anlayamadım
Explanation:
heeeeeem ben bunlardan anlamam giiiit başkasına sooooor bu arada en iyi seç benü bikere bari seçte bi en iyi cvp olsun