1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artist 52 [7]
3 years ago
13

Using a forked rod, a 0.5-kg smooth peg P is forced to move along the vertical slotted path r = (0.5 θ) m, whereθ is in radians.

The angular position of the arm isθ = (π8t2) rad where t is in seconds. The peg is in contact with only one edge of the rod and slot at any instant. (Figure 1)
Part A

Determine the magnitude of the force of the rod on the peg at the instant t = 2 s.

Express your answer to three significant figures and include the appropriate units.

F =
Part B

Determine the magnitude of the normal force of the slot on the peg.

Express your answer to three significant figures and include the appropriate units.

N =

Engineering
1 answer:
-BARSIC- [3]3 years ago
4 0

Answer:

N_c = 3.03 N

F = 1.81 N

Explanation:

Given:

- The attachment missing from the question is given:

- The given expressions for the radial and θ direction of motion:

                                       r = 0.5*θ

                                       θ = 0.5*t^2              ...... (correction for the question)

- Mass of peg m = 0.5 kg

Find:

a) Determine the magnitude of the force of the rod on the peg at the instant t = 2 s.

b) Determine the magnitude of the normal force of the slot on the peg.

Solution:

- Determine the expressions for radial kinematics:

                                        dr/dt = 0.5*dθ/dt

                                        d^2r/dt^2 = 0.5*d^2θ/dt^2

- Similarly the expressions for θ direction kinematics:

                                        dθ/dt = t

                                        d^2θ/dt^2 = 1

- Evaluate each at time t = 2 s.

                                        θ = 0.5*t^2 = 0.5*2^2 = 2 rad -----> 114.59°

                                        r = 1 m , dr / dt = 1 m/s , d^2 r / dt^2 = 0.5 m/s^2

- Evaluate the angle ψ between radial and horizontal direction:

                                        tan Ψ = r / (dr/dθ) = 1 / 0.5

                                        Ψ = 63.43°

- Develop a free body diagram (attached) and the compute the radial and θ acceleration:

                                        a_r = d^2r / dt^2 - r * dθ/dt

                                        a_r = 0.5 - 1*(2)^2 = -3.5 m/s^2

                                        a_θ =  r * (d^2θ/dt^2) + 2 * (dr/dt) * (dθ/dt)

                                        a_θ = 1(1) + 2*(1)*(2) = 5 m/s^2

- Using Newton's Second Law of motion to construct equations in both radial and θ directions as follows:

Radial direction:              N_c * cos(26.57) - W*cos(24.59) = m*a_r

θ direction:                      F  - N_c * sin(26.57) + W*sin(24.59) = m*a_θ

Where, F is the force on the peg by rod and N_c is the normal force on peg by the slot. W is the weight of the peg. Using radial equation:

                                       N_c * cos(26.57) - 4.905*cos(24.59) = 0.5*-3.5

                                       N_c = 3.03 N

                                       F  - 3.03 * sin(26.57) + 4.905*sin(24.59) = 0.5*5

                                       F = 1.81 N

You might be interested in
The shaft is made of A992 steel. It has a diameter of 1 in. and is supported by bearings at A and D, which allows free rotation.
zysi [14]

Answer:

the angle of twist of B with respect to D is -1.15°

the angle of twist of C with respect to D is 1.15°

Explanation:

The missing diagram that is supposed to be added to this image is attached in the file below.

From the given information:

The shaft is made of A992 steel. It has a diameter of 1 in and is supported by bearing at A and D.

For the Modulus of Rigidity  G = 11 × 10³ Ksi =  11 × 10⁶ lb/in²

The objective are :

1) To determine the angle of twist of B with respect to D

Considering the Polar moment of Inertia at the shaft J\tau

shaft J\tau = \dfrac{\pi}{2}r^4

where ;

r = 1 in /2

r = 0.5 in

shaft J \tau = \dfrac{\pi}{2} \times 0.5^4

shaft J\tau = 0.098218

Now; the angle of twist at  B with respect to D  is calculated by using the expression

\phi_{B/D} = \sum \dfrac{TL}{JG}

\phi_{B/D} = \dfrac{T_{CD}L_{CD}}{JG}+\dfrac{T_{BC}L_{BC}}{JG}

where;

T_{CD} \ \  and \ \  L_{CD} are the torques at segments CD and length at segments CD

{T_{BC} \  \ and  \ \ L_{BC}} are the torques at segments BC and length at segments BC

Also ; from the diagram; the following values where obtained:

L_{BC}} = 2.5  in

J\tau = 0.098218

G =  11 × 10⁶ lb/in²

T_{BC = -60 lb.ft

T_{CD = 0 lb.ft

L_{CD = 5.5 in

\phi_{B/D} = 0+ \dfrac{[(-60 \times 12 )] (2.5 \times  12 )}{ (0.9818)(11 \times 10^6)}

\phi_{B/D} = \dfrac{[(-720 )] (30 )}{1079980}

\phi_{B/D} = \dfrac{-21600}{1079980}

\phi_{B/D} = − 0.02 rad

To degree; we have

\phi_{B/D}  = -0.02 \times \dfrac{180}{\pi}

\mathbf{\phi_{B/D}  = -1.15^0}

Since we have a negative sign; that typically illustrates that the angle of twist is in an anti- clockwise direction

Thus; the angle of twist of B with respect to D is 1.15°

(2) Determine the angle of twist of C with respect to D.Answer unit: degree or radians, two decimal places

For  the angle of twist of C with respect to D; we have:

\phi_{C/D} = \dfrac{T_{CD}L_{CD}}{JG}+\dfrac{T_{BC}L_{BC}}{JG}

\phi_{C/D} = 0+\dfrac{T_{BC}L_{BC}}{JG}

\phi_{B/D} = 0+ \dfrac{[(60 \times 12 )] (2.5 \times  12 )}{ (0.9818)(11 \times 10^6)}

\phi_{C/D} = \dfrac{21600}{1079980}

\phi_{C/D} = 0.02 rad

To degree; we have

\phi_{C/D}  = 0.02 \times \dfrac{180}{\pi}

\mathbf{\phi_{C/D}  = 1.15^0}

3 0
3 years ago
A brittle material is subjected to a tensile stress of 1.65 MPa. If the specific surface energy and modulus of elasticity for th
8090 [49]

Answer:

The maximum length of a surface flaw that is possible without fracture is

2.806 \times 10^{-4} m

Explanation:

The given values are,

σ=1.65 MPa

γs=0.60 J/m2

E= 2.0 GPa

The maximum possible length is calculated as:

\begin{gathered}a=\frac{2 E \gamma_{s}}{\pi \sigma^{2}}=\frac{(2)\left(2 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}\right)(0.60 \mathrm{~N} / \mathrm{m})}{\pi\left(1.65\times 10^{6} \mathrm{~N} / \mathrm{m}^{2}\right)^{2}} \\=2.806 \times 10^{-4} \mathrm{~m}\end{gathered}

The maximum length of a surface flaw that is possible without fracture is

2.806 \times 10^{-4} m

7 0
3 years ago
Can anyone solve this for me?sequential circuit ,flipflop
andrezito [222]

Explanation:

We assume the T flip-flop changes state on the rising edge of the clock input.

The first stage is connected to the clock. The second stage clock is connected to the inverse of the Q output of the first stage, so that when the first stage Q makes a 1 to 0 transition, the second stage changes state.

6 0
2 years ago
The demand schedules for Jones, Smith, and other buyers are shown in the table below:
Solnce55 [7]

The demand curve is the graphical representation of the relationship between the price of a good and the quantity demanded for a given period of time.

<h3>What is a demand schedule?</h3>

A demand schedule is a table which shows the quantity demanded of a good or service at different price levels.

A demand schedule can be graphed as a continuous demand curve on a chart where the Y-axis represents the price and the X-axis represents quantity.

Here, a typical representation, the price will appear on the left vertical axis, the quantity demanded on the horizontal axis.

Note that the complete information wasn't found and an overview was given.

Learn more about demand on:

brainly.com/question/1245771

#SPJ1

4 0
2 years ago
1. The AWS A5.5 is a list of electrodes used to weld which type of metal?
LenaWriter [7]

Answer:

low alloy steels

Explanation:

6 0
3 years ago
Other questions:
  • At a lake location, the soil surface is 6 m under the water surface. Samples from the soil deposit underlying the lake indicate
    15·1 answer
  • The power supply converts the wall outlet AC power into DC power. T or F
    15·1 answer
  • Your employer has the ability to protect you from cave-ins and other hazards by using adequately-designed protection systems in
    13·1 answer
  • Carbon dioxide (CO2) is compressed in a piston-cylinder assembly from p1 = 0.7 bar, T1 = 320 K to p2 = 11 bar. The initial volum
    5·1 answer
  • Rockfalls can cause major damage to roads and infrastructure. To design mitigation bridges and barriers, engineers use the coeff
    10·1 answer
  • A cylindrical metal specimen having an original diameter of 12.8 mm (0.505 in.) and gauge length of 50.80 mm (2.000 in.) is pull
    9·1 answer
  • 1) When you invest in stock, what are you doing?
    15·1 answer
  • What is the number model for three families live in the same apartment
    8·2 answers
  • Why is Ethics an important part of engineering?
    8·1 answer
  • The modifications of superheat and reheat for a vapor power plant are specifically better for the operation which of the followi
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!