Answer:
a) T = 2.26 N, b) v = 1.68 m / s
Explanation:
We use Newton's second law
Let's set a reference system where the x-axis is radial and the y-axis is vertical, let's decompose the tension of the string
sin 30 =
cos 30 =
Tₓ = T sin 30
T_y = T cos 30
Y axis
T_y -W = 0
T cos 30 = mg (1)
X axis
Tₓ = m a
they relate it is centripetal
a = v² / r
we substitute
T sin 30 = m
(2)
a) we substitute in 1
T =
T =
T = 2.26 N
b) from equation 2
v² =
If we know the length of the string
sin 30 = r / L
r = L sin 30
we substitute
v² =
v² =
For the problem let us take L = 1 m
let's calculate
v =
v = 1.68 m / s
Answer:
earth
Explanation:
The formula for the orbital period of the moon is given by

As the time period is inversely proportional to the square root of the acceleration due to gravity of the planet.
As the value of acceleration due to gravity on Jupiter is more than the earth, so the period of moon around the earth is large as compared to the period of the moon around the Jupiter when the distance is same.

A system that can be affected by the outside environment, by an exchange of matter or energy is an open physical system .
Answer: 2.49×10^-3 N/m
Explanation: The force per unit length that two wires exerts on each other is defined by the formula below
F/L = (u×i1×i2) / (2πr)
Where F/L = force per meter
u = permeability of free space = 1.256×10^-6 mkg/s^2A^2
i1 = current on first wire = 57A
i2 = current on second wire = 57 A
r = distance between both wires = 26cm = 0.26m
By substituting the parameters, we have that
Force per meter = (1.256×10^-6×57×57)/ 2×3.142 ×0.26
= 4080.744×10^-6/ 1.634
= 4.080×10^-3 / 1.634
= 2.49×10^-3 N/m