Electron microscopes differ from light microscopes in that they produce an image of a specimen by using a beam of electrons rather than a beam of light. Electrons have much a shorter wavelength than visible light, and this allows electron microscopes to produce higher-resolution images than standard light microscopes
KE = 0
<h3>Further explanation </h3>
Energy is the ability to do work
Energy because its motion is expressed as Kinetic energy (KE) which can be formulated as:

So for two objects that have the same speed, the greater the mass of the object, the greater the kinetic energy
The stone in hand is in a motionless state (at rest) so that its velocity (v) = 0, so it has no kinetic energy
But this stone can have <em>potential energy that is gained due to its height</em>
Atoms or molecule after gaining of electron possesses negative charge and is known as anion.
For the given sets:
The given elements are alkali metals and have tendency to lose electrons easily and form cations.
The given elements are non-metals and are electronegative. So, they gain electrons easily and form anion.
Carbon has tendency to form bond by sharing of electrons, Sulfur has tendency to gain electrons and form anion whereas Lead has tendency to lose electron.
Potassium and Iron has tendency to lose electron and form cation whereas Bromine has tendency to gain electron to form anion.
Hence, from the given sets, all elements of set:
have tendency to form anions in binary ionic compounds.
Answer:
The answer to your question is: CH₄ + 3/2 O₂ ⇒ CO₂ + 2 H₂O
Explanation:
Methane = CH₄
Oxygen = O
Carbon dioxide = CO₂
Water = H₂O
CH₄ + 3/2 O₂ ⇒ CO₂ + 2 H₂O
This is the balanced equation
Answer:

Explanation:
The number of valence electrons tells us the group number of the neutral atom.
The atom has 4 valence electrons.
The atom is in group 4.