Complete Question:
Check the file attached to get the complete question
Answer:
In the film Ice word Revenge, vehicle 2 did not fall of the cliff because,
but in Claire's test, vehicle 2 off the cliff because 
Explanation:
In Claire's test, the weight of vehicle 1 is either equal to or greater than the weight of vehicle 2, so it was sufficient to push it down the cliff. In the film Ice word revenge, the weight of vehicle 1 is less than the weight of vehicle 2, it is not sufficient to make it fall off the cliff ( Note: Looking exactly the same in the movie, as Claire claimed, does not mean they have the same mass). Therefore if Claire wants a collision that will not make the vehicle 2 fall off the cliff, he should collide it with a vehicle of lesser mass/weight.
Answer:
<em>-z axis</em>
Explanation:
According to the left hand rule for an electron in a magnetic field, hold the thumb of the left hand at a right angle to the rest of the fingers, and the rest of the fingers parallel to one another. If the thumb represents the motion of the electron, and the other fingers represent the direction of the field, then the palm will push in the direction of the force on the electron. In this case, the left hand will be held out with the thumb pointing to the right (+x axis), and the palm facing your body (-y axis). The magnetic field indicated by the other fingers will point down in the the -z axis.
Answer:
1- For the track B. The potential energy is the same for the two cars, but because of the slope of the track, the car B earn kinetic energy faster. The gravitation acceleration of the cars will be g•sinθ, and the angle of the track B will have a bigger value for sinθ
2- The conservation of energy applies because the roller coaster is a closed track. When a car climb the track, it earn GPE, which is given by mgh, when it get down in the track, it transform GPE in KE, which is given in 1/2mv².
3-
Position of car (m) GPE KE GPE + KE
top (30m) 60000 0 60000
bottom (0m) 0 60000 60000
halfway down (15m) 30000 30000 60000
three-quarters way down 15000 45000 60000
Answer:
4.71 eV
Explanation:
For an electromagnetic wave with wavelength

the energy of the photons in the wave is given by

where h is the Planck constant and c the speed of light. Therefore, this is the minimum energy that a photon should have in order to extract a photoelectron from the copper surface.
The work function of a metal is the minimum energy required by the incident light in order to extract photoelectrons from the metal's surface. Therefore, the work function corresponds to the energy we found previously. By converting it into electronvolts, we find:
