Gravity largely depends on the comparison of two objects; it's why you have the equation F= (GMm)/r^2. On Earth, you have different altitudes that, with the formula, will give different results for gravity because the radius is different everywhere. This difference on calculations, however, are seen to be miniscule. We know gravity as 9.81 m/s^2 but it might be different by thousandths or hundreds of thousandths of a decimal.
Answer:
Potential energy is 
Explanation:
The potential energy depends on the mass, the acceleration of gravity g and the height at which the object or person is.
Potential energy 
In this case we would need to know the exact mass of the hiker in order to calculate the potential energy.
But we know the values of g and h


So, the potential energy

m is the mass of the hiker, wich is not in the description of the problem.
Answer:
Shorter path
Explanation:
For all turning vehicles, the rear wheels follow <u>Shorter path</u> than the front wheels.
Any turning vehicle, the rear(the back part of something, especially a vehicle.) wheels follow a shorter path than the front wheels. The longer the vehicle is, the greater the difference will be in path. Trucks initially swing out before making a turn
Answer:
F = m a = m v / t where v is the change in velocity in time t
F = p / t since m v is equal to p
F = 2.2 (kg m / s) / 1.1 s = 2 kg-m / s^2 = 2 N
Or you can use the impulse equation
Answer:
0.15
Explanation:
Assuming the rope is horizontal, sum the forces in the y direction:
∑F = ma
N − mg = 0
N = mg
Sum the forces in the x direction:
∑F = ma
F − Nμ = ma
Substitute:
F − mgμ = ma
mgμ = F − ma
μ = (F − ma) / (mg)
Plug in values:
μ = (8.0 N − 2.0 kg × 2.5 m/s²) / (2.0 kg × 9.8 m/s²)
μ = 0.15