<h2>
Answer:</h2><h2>
The acceleration of the meteoroid due to the gravitational force exerted by the planet = 12.12 m/
</h2>
Explanation:
A meteoroid is in a circular orbit 600 km above the surface of a distant planet.
Mass of the planet = mass of earth = 5.972 x
Kg
Radius of the earth = 90% of earth radius = 90% 6370 = 5733 km
The acceleration of the meteoroid due to the gravitational force exerted by the planet = ?
By formula, g = 
where g is the acceleration due to the gravity
G is the universal gravitational constant = 6.67 x

M is the mass of the planet
r is the radius of the planet
Substituting the values, we get
g = 
g = 12.12 m/
The acceleration of the meteoroid due to the gravitational force exerted by the planet = 12.12 m/
It is diffraction
Explanation:
The opening is the aperture
Answer:
<h2>66.67 km/hr</h2>
Explanation:
The average velocity of the car can be found by using the formula

d is the distance
t is the time taken
From the question we have

We have the final answer as
<h3>66.67 km/hr</h3>
Hope this helps you
1)
Answer:
Part 1)
H = 30.6 m
Part 2)
t = 2.5 s
Part 3)
t = 2.5 s
Part 4)

Explanation:
Part 1)
initial speed of the ball upwards

so maximum height of the ball is given by



Part 2)
As we know that final speed will be zero at maximum height
so we will have



Part 3)
Since the time of ascent of ball is same as time of decent of the ball
so here ball will same time to hit the ground back
so here it is given as
t = 2.5 s
Part 4)
since the acceleration due to earth will be same during its return path as well as the time of the motion is also same
so here its final speed will be same as that of initial speed
so we have

2)
Answer:
a = 9.76 m/s/s
Explanation:
As we know that the object is released from rest
so the displacement of the object in vertical direction is given as



3)
Answer:
v = 29.7 m/s
Explanation:
acceleration of the rocket is given as

time taken by the rocket
t = 0.33 min
final speed of the rocket is given as



4)
Answer:
Part 1)
y = 25.95 m
Part 2)
d = 6.72 m
Explanation:
Part 1)
As it took t = 2.3 s to hit the water surface
so here we will have



Part 2)
Distance traveled by it in horizontal direction is given as


