Answer:
an ice cube and paper cube with the same dimensions
Explanation:
an example is an ice cube and a cube with the same dimensions made of paper. these have the same volume, but different masses because the particles are packed differently and in different amounts.
The molarity of a solution is the number of moles of a substance divided by the volume in liters prepared.
, where n is number of moles and V is the volume in liters.
In order to calculate the mass of solute we need to convert the volume and molarity to moles

Now that we have moles we use the relative formula mass of NaCO₃, We have 1 Na atom, 1 C atom and 3 O atoms, thus


<h3>
Answer:</h3>
0.127 mol Au
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 25.0 g Au
[Solve] moles Au
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of Au - 196.97 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.126923 mol Au ≈ 0.127 mol Au
The atoms combine to form compounds to attain stability in nature. The combination of atoms takes place by sharing of electrons between the atoms or complete transfer of electrons from one atom to another. Generally, atoms combine to complete their octet, that is to possess eight electrons in their outer most shell (noble gas configurations) except hydrogen which can attain stability by two electrons in its outer most shell.
Since germanium has 4 electrons in its outer most shell so it needs 4 more electrons to complete its octet and attains the stability. Hydrogen has 1 electron in its outer most shell and it needs only 1 electron to attain stability so, each germanium will combine with 4 hydrogen atoms and thus forming
molecule which is stable in nature.
Hence,
is the formula of the hydride formed by germanium.