Question:
A 63.0 kg sprinter starts a race with an acceleration of 4.20m/s square. What is the net external force on him? If the sprinter from the previous problem accelerates at that rate for 20m, and then maintains that velocity for the remainder for the 100-m dash, what will be his time for the race?
Answer:
Time for the race will be t = 9.26 s
Explanation:
Given data:
As the sprinter starts the race so initial velocity = v₁ = 0
Distance = s₁ = 20 m
Acceleration = a = 4.20 ms⁻²
Distance = s₂ = 100 m
We first need to find the final velocity (v₂) of sprinter at the end of the first 20 meters.
Using 3rd equation of motion
(v₂)² - (v₁)² = 2as₁ = 2(4.2)(20)
v₂ = 12.96 ms⁻¹
Time for 20 m distance = t₁ = (v₂ - v ₁)/a
t₁ = 12.96/4.2 = 3.09 s
He ran the rest of the race at this velocity (12.96 m/s). Since has had already covered 20 meters, he has to cover 80 meters more to complete the 100 meter dash. So the time required to cover the 80 meters will be
Time for 100 m distance = t₂ = s₂/v₂
t₂ = 80/12.96 = 6.17 s
Total time = T = t₁ + t₂ = 3.09 + 6.17 = 9.26 s
T = 9.26 s
Answer:
Explanation:
A Spring stretches / compresses when force is applied on them and they are governed by the Hookes Law which states that the force required to stretch or compress a spring is directly proportional to the distance it is stretched.

F is the force applied and x is the elongation of the spring
k is the spring constant.
negative sign indicates the change in direction from equilibrium position.
In the given question, we dont have force but we know that the pan is hanging. We also know from the Newton's second law of motion that

Inserting this into Hooke's Law

computing it for x,

This is the model which will tell the length of the spring against change in the mass located in the pan.
No they have eukaryotic cells
Answer:
Its traveling in the +x direction
Explanation:
The E-field is in the +y-direction, and the B-field is in the +z-direction, so it must be moving along the +x-direction, since the E-field, B-field and the direction of moving are all at right angles to each other.
Answer:
His journey took him 3 hours 15 minutes.
Explanation: 4 miles every hour. So 1 hr is equal to 4 miles, 2 hrs is equal to 8 miles, 3 hrs is equal to 12 miles. Now he just has 1 miles left, and since it takes him a hour to cycle 4 miles, 60 divided by 4 is 15. Therefore, 1 mile is equal to 15 minutes.