Can't find the options on the keyboard so ill try to describe it. I think either an He symbol or the greek letter alpha is accepted. There must be a 4 at the top left and a 2 at bottom left.
Correct question:
Consider the motion of a 4.00-kg particle that moves with potential energy given by

a) Suppose the particle is moving with a speed of 3.00 m/s when it is located at x = 1.00 m. What is the speed of the object when it is located at x = 5.00 m?
b) What is the magnitude of the force on the 4.00-kg particle when it is located at x = 5.00 m?
Answer:
a) 3.33 m/s
b) 0.016 N
Explanation:
a) given:
V = 3.00 m/s
x1 = 1.00 m
x = 5.00

At x = 1.00 m

= 4J
Kinetic energy = (1/2)mv²

= 18J
Total energy will be =
4J + 18J = 22J
At x = 5

= -0.24J
Kinetic energy =

= 2Vf²
Total energy =
2Vf² - 0.024
Using conservation of energy,
Initial total energy = final total energy
22 = 2Vf² - 0.24
Vf² = (22+0.24) / 2

= 3.33 m/s
b) magnitude of force when x = 5.0m



At x = 5.0 m


= 0.016N
Answer: 40 J
Explanation: Work is equal to the product of force and distance.
W = Fd
= 4N ( 10 m)
= 40 J
Answer:
Momentum is conserved in all three physical directions at the same time.
Explanation:
There is a peculiarity, however, in that momentum is a vector, involving both the direction and the magnitude of motion, so that the momenta of objects going in opposite directions can cancel to yield an overall sum of zero.
Answer:
Relation between kinetic energy of truck and kinetic energy of car is given as

Explanation:
As we know that mass of truck is four times the mass of car

and the speed of truck is double that of speed of car

now we have kinetic energy of the truck is given as

similarly kinetic energy of car is given as

now from above two equations we have


so we have
