Answer:
10.01 cm
Explanation:
Given that,
The time delay between transmission and the arrival of the reflected wave of a signal using ultrasound traveling through a piece of fat tissue was 0.13 ms.
The average propagation speed for sound in body tissue is 1540 m/s.
We need to find the depth when the reflection occur. We know that, the distance is double when transmitting and arriving. So,

or
d = 10.01 cm
So, the reflection will occur at 10.01 cm.
K=0.5 mu×u
K=2200J no matter the direction
Answer:
Hope this helps u, pls mark me brainlist
Explanation:
The sun emits shortwave radiation because it is extremely hot and has a lot of energy to give off. Once in the Earth's atmosphere, clouds and the surface absorb the solar energy. The ground heats up and re-emits energy as longwave radiation in the form of infrared rays.
Answer: the image distance is -18, 28 cm this means behind of the concave mirror. The image size is 2.2 higher that the original so it has 8.8 cm with the same orientation as original and it is a virtual imagen.
Explanation: In order to sove the imagen formation for a concave mirror we have to use the following equation:
1/p+1/q=1/f where p and q represents the distance to the mirror for the object and imagen, respectively. f is the focal length for the concave mirror.
replacing the values we obtain:
1/8.3+1/q=1/15.2
so 1/q=(1/15.2)-(1/8.3)=-54.7*10^-3
then q=-18.28 cm
The magnification is given by M=-q/p=-(-18,28)/8.3= 2.2
We also add a picture to see the imagen formation for this case.
Answer:

Explanation:
Given that,
Magnetic force acting on an electron, 
The magnitude of the magnetic field,
We need to find the magnitude of the velocity. We know that the magnetic force is given by :

Where
v is the velocity
So,

So, the magnitude of velocity is
.