suppose the mass of a metal object be m and its specific heat capacity be s, and, H joules of heat is required to raise its temperature by t degrees Celsius
Than H is given by relation, 
Now if this object is cut in two half's, than mass of half part will also be half <em>i.e. </em>M/2
So heat required to heat the half part will be
Hence, the heat required to raise the half object to a specific temperature will also become half.
Answer:Metaloids have properties of both metals and non-metals.
Explanation:
Place the object in between the two jaws such that they touch opposite ends of the object making sure the object is held firmly but don’t press too tight. If you need to measure an internal diameter, then insert the upper jaws in to the cavity and open them till they touch the sides. Tighten the locking screw to hold the jaws in position.
Note the position of the vernier scale zero on the main scale. The main scale reading is the division just before where the zero mark of the vernier scale is aligned. So is the zero mark aligns just after the fifth division between 3 and 4 the main scale reading is then 3.5.
The next step is to take the vernier scale reading. To do this find the mark on the vernier scale which lines up perfectly with a mark on the main scale. The vernier reading can then be found by multiplying the least value of the vernier scale with the number of divisions till that mark. For example if the least value is 0.01 mm and the 7thmark of the vernier scale is lined up perfectly then the vernier scale reading is 7 x 0.01 = 0.07.
The final step is to add the main scale and vernier readings to get the final measurement. For example 3.5 + 0.07 = 3.57 mm.
Answer:
speed and time are Vf = 4.43 m/s and t = 0.45 s
Explanation:
This is a problem of free fall, we have the equations of kinematics
Vf² = Vo² + 2g x
As the object is released the initial velocity is zero, let's look at the final velocity with the equation
Vf = √( 2 g X)
Vf = √(2 9.8 1)
Vf = 4.43 m/s
This is the speed with which it reaches the ground
Having the final speed we can find the time
Vf = Vo + g t
t = Vf / g
t = 4.43 / 9.8
t = 0.45 s
This is the time of fall of the body to touch the ground
Vertical forces:
There is a force of 579N acting upward, and a force of 579N
acting downward.
The vertical forces are balanced ... they add up to zero ...
so there's no vertical acceleration.
Not up, not down.
Horizontal forces:
There is a force of 487N acting to the left, and a force of 632N
acting to the right.
The net horizontal force is
(487-left + 632-right) - (632-right - 487-right) = 145N to the right.
The net force on the car is all to the right.
The car accelerates to the right.