The correct answer from the choices given is the third option. Covalent compounds have low boiling points. Also, their melting points are low. Covalent bonds have relatively low attractions which results to these properties. The bonds are easily broken by taking energy or adding energy.
Gravity slows it down dramatically so that is why it slows down
Answer:
See the answer below
Explanation:
The best approach would be to <u>pour the liquid from the large reagent bottle into a small-size beaker or reagent bottle first</u>, before measuring the required quantity out into the reaction vessel. This is necessary in order to maintain safety in the laboratory.
Pouring the liquid directly from the large reagent bottle into the measuring cylinder or directly into the reaction bottle can compromise safety in the laboratory. The liquid might splash out and cause harm to the handler or create other harmful circumstances in the laboratory.
Agar is used to assist establish an anaerobic environment that promotes nitrate reduction.
Nitrate Reduction test:
- The nitrate in the broth is converted to nitrite by organisms that can produce the nitrate reductase enzyme, which can then be further converted to nitric oxide, nitrous oxide, or nitrogen.
- Anaerobic respiration and denitrification are two processes that can convert nitrate to a variety of compounds.
- While denitrification only reduces nitrate to molecular nitrogen, anaerobic respiration employs nitrate as the bacterium's final electron acceptor, reducing it to a range of chemicals.
- The nitrate reduction test is based on the detection of nitrite and its capacity to produce a red precipitate (prontosil), which is a water-soluble azo dye, when it combines with sulfanilic acid to create a complex (nitrite-sulfanilic acid).
Learn more about the Nitrate reduction test with the help of the given link:
brainly.com/question/11181586
#SPJ4
Explanation:
the correct match can as follows:
1. helium ⇒ discrete atoms (helium is an inert gas)
2. oxygen ⇒ molecules (oxygen exists in molecular form as O2)
3 Magnesium ⇒ matalic lattice ( Magnesium is a metal FCC crystal Structure :) )
4 Aluminum⇒ covalent network (since it is situated in the middle of the group and posses amphoteric properties too)