382.85 Celsius is the temperature does 0.750 moles of an ideal gas occupy a volume of 35.9 L at 114 kPa.
Explanation:
Given data:
number of moles of the gas = 0.75 moles
volume of the gas = 35.9 liters
pressure of the gas = 114 KPa or 1.125 atm
R = 0.0821 latm/moleK
temperature of the gas T = ?
The equation used to calculate temperature from above data is ideal gas law equation.
the equation is :
PV = nRT
T = ![\frac{PV}{nR}](https://tex.z-dn.net/?f=%5Cfrac%7BPV%7D%7BnR%7D)
Putting the values in the above rewritten equation:
T = ![\frac{1.125 X 35.9}{0.75 X 0.0821}](https://tex.z-dn.net/?f=%5Cfrac%7B1.125%20X%2035.9%7D%7B0.75%20X%200.0821%7D)
T = 655.9 K
To convert kelvin into celsius, formula used is
K = 273.15+ C
putting the values in the equation
C = 656 - 273.15
= 382.85 Celsius
Answer:
15
Explanation:
Magnesium Acetate Mg(C2H3O2)2
Number of atoms:
Carbon = 4
Hydrogen = 6
Magnesium = 1
Oxygen = 4
Total = 15
The weather behind the cold front is considered a High
Answer:
2
Explanation:
In balancing nuclear reactions the mass number and atomic numbers are usually conserved. This implies that from the given equation, the sum of the number of the subscript on the right hand side must be equal to that on the left hand side. This also applies to the superscript:
For the mass numbers(superscript):
235 + 1 = 1 + 139 + 95
236 = 235
This is not balanced
For the atomic number:
92 + 0 = 0 + 53 + 39
92 = 92
This is balanced.
We simply inspect to see how to balance the mass number.
By putting a coefficient of 2 behind the neutron atom, the equation becomes balanced.
A heterogeneous catalyst can be easily separated from reactants.