By calculating it's number of GROUP........
Explanation:
Different atoms binds their outermost shell electrons with different amount of energy.
The amount of energy required to remove an electron from an atom is the ionization energy.
- Ionization energy measures the readiness of an atom to lose electrons.
- From the given problem, we can infer that in group O the ionization energy decreases down the group.
- Helium has the highest ionization energy.
- Down a group on the periodic table, ionization energy decrease because:
- atomic radii increases down the group.
- there is an increasing shielding/screening effect of inner shell electrons on the outermost shell electrons.
Learn more:
Ionization energy brainly.com/question/2153804
#learnwithBrainly
These gases all have similar properties under standard conditions: they are all odorless, colorless, monatomic gases with very low chemical reactivity. The six noble gases that occur naturally are helium (He), Neon (Ne), Argon (Ar), Krypton (Kr), Xenon (Xe), and Radon (Rn).
Non-polar covalent
Explanation:
Propane is made up of non-polar covalent bonds and it can be expected to dissolve in hexane and to not dissolve in water.
Propane is an hydrocarbon gas.
It forms by sharing of electrons between two atoms with very low electronegativity differences.
This differences results in equal sharing of the shared electron. Therefore they form a non-polar covalent bond.
Water is a polar covalent compound and cannot dissolve compounds that are not polar like propane.
Propane will only dissolve in a like substance like hexane which is equally non-polar.
learn more:
Covalent compounds brainly.com/question/3109255
#learnwithBrainly
Answer:
0.5188 M or 0.5188 mol/L
Explanation:
Concentration is calculated as <u>molarity</u>, which is the number of moles per litre.
***Molarity is represented by either "M" or "c" depending on your teacher. I will use "c".
The formula for molarity is:
n = moles (unit mol)
V = volume (unit L)
<u>Find the molar mass (M) of potassium hydroxide.</u>

<u>Calculate the moles of potassium hydroxide.</u>


Carry one insignificant figure (shown in brackets).
<u>Convert the volume of water to litres.</u>


Here, carrying an insignificant figure doesn't change the value.
<u>Calculate the concentration.</u>

<= Keep an insignificant figure for rounding
<= Rounded up
<= You use the unit "M" instead of "mol/L"
The concentration of this standard solution is 0.5188 M.