Answer:
0.416 mol CaBr₂
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
83.1 g CaBr₂
<u>Step 2: Identify Conversions</u>
Molar Mass of Ca - 40.08 g/mol
Molar mass of Br - 79.90 g/mol
Molar Mass of CaBr₂ - 40.08 + 2(79.90) = 199.88 g/mol
<u>Step 3: Convert</u>
<u />
= 0.415749 mol CaBr₂
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
0.415749 mol CaBr₂ ≈ 0.416 mol CaBr₂
This set up of a conversion table should show you that if you multiply
the grams of BeI2 times .02 moles, it equals <span>5.256 g (your answer) </span>
The efficiency of any machine is given by:
efficiency = output obtained / input given
Substituting the values,
Efficiency = 105 / 150
Efficiency = 0.7
Converting this to a percentage, the efficiency of the hammer is 70%.
This is a fairly high efficiency, and this is due to the fact that the hammer is a simpler machine. The more complex a machine is, the greater are the losses in it due to friction, meaning there is a lower efficiency.
Answer:
the electrolysis reaction is a non- spontaneous reaction
Explanation:
Since electrons flow from it, the anode in an electrolytic cell is positive, while the cathode is negative when electrons flow into it. The device functions like a galvanic cell in that direction. In an electrolytic cell, an external voltage is applied and that is what causes a non spontaneous reaction
Atoms of different elements can be identical