Development length: The actual length of the bent conduit. Gain: Since a conduit bends radially rather than at an angle, the total length will not match the length required for all bends. Gain is the amount of space that is saved by a
curve.
<h3>Bent Conduit</h3>
Conduit benders from Klein Tools are built to function and last longer than even the highest professional standards. To ensure a favourable experience and significantly enhance the final result of your project, it is advised that you become familiar with bending concepts, procedures, and the bender's capabilities. The benders are labelled with various alignment symbols to enable the operator make the bends required to complete any job. This aids bending while executing a ground or air bend. Arrow, teardrop, star point, and angle markings are the symbols on the Klein Tools benders. On certain bender head sides, you can see these markings.
Learn more about bent conduit here:
brainly.com/question/5023977
#SPJ4
T2=r In the form of Kepler's law that can use to relate the period T and radius of the planet in our solar systems
<u>Explanation:</u>
<u>Kepler's third law:</u>
- Kepler's third law states that For all planets, the square of the orbital
period (T) of a planet is proportional to the cube of the average orbital radius (R).
- In simple words T (square) is proportional to the R(cube) T²2 ∝1 R³3
- T2 / R3 = constant = 4π ² /GM
where G = 6.67 x 10-11 N-m2 /kg2
M = mass of the foci body
Answer: 14.28 m/s
Explanation:
Assuming the girl is spinning with <u>uniform circular motion</u>, her centripetal acceleration
is given by the following equation:
(1)
Where:
is the <u>centripetal acceleration</u>
is the<u> tangential speed</u>
is the <u>radius</u> of the circle
Isolating
from (1):
(2)
<u />
Finally:
This is the girl's tangential speed