Answer:
The answer is
<h2>10 m/s²</h2>
Explanation:
To find the acceleration of an object given the force and mass we use the formula
<h3>

</h3>
From the question
mass of object = 50 kg
force = 500 N
So the acceleration is
<h3>

</h3>
We have the final answer as
<h3>10 m/s²</h3>
Hope this helps you
Answer:
The image of everything in front of the mirror is reflected backward, retracing the path it traveled to get there. Nothing is switching left to right or up-down. Instead, it's being inverted front to back. ... That reflection represents the photons of light, bouncing back in the same direction from which they came
Explanation:
Answer:
Y = 3.87 x 10⁻³ m = 3.87 mm
Explanation:
This problem can be solved by using Young's double-slit experiment formula:

where,
Y = fringe spacing = ?
L = slit to screen distance = 2 m
λ = wavelength of light = 580 nm = 5.8 x 10⁻⁷ m
d = slit width = 0.3 mm = 3 x 10⁻⁴ m
Therefore,

<u>Y = 3.87 x 10⁻³ m = 3.87 mm</u>
Answer:
The linear velocity of the object is 8.71 m/s.
Explanation:
Given;
mass of the object, m = 1 kg
radius of the circle, r = 3.3 meters
centripetal force, F = 23 N
Centripetal force is given by;

where;
v is the linear velocity of the object

Therefore, the linear velocity of the object is 8.71 m/s.