Answer:
An estimate for the time it will take for a spacecraft to travel from Earth to Mars is approximately 138.8 days
Explanation:
The distance between Earth and the Moon = 684,400 km
The distance between Earth and Mars = 220.58 × 10⁶ km
The distance between Earth and Pluto = 5.2241 × 10⁹ km
The ratio of the distance between Earth and Pluto and the distance between Earth and Mars = (5.2241 × 10⁹ km)/(220.58 × 10⁶ km) ≈ 23.683
It took 2006 to 2015 (9 years) to travel from Earth to Pluto, therefore, it can take approximately (9 years)/(23.683) ≈ 0.38 of a year which is ((9 years)/(23.683)) × 365.2422 ≈ 138.8 days for a spacecraft to travel from Earth to Mars
Incomplete question. However, I provided a brief about Kinetic energy generation.
<u>Explanation:</u>
Interestingly, Kinetic energy in simple terms refers to the energy possessed by a body in motion.
It is often calculated using the formula E =
A good example of creating even more kinetic energy is a hand crank toy car that moves after you wind it a little, when the car moves it is generating another measure of K.E.
Answer:i One way to solve the quadratic equation x2 = 9 is to subtract 9 from both sides to get one side equal to 0: x2 – 9 = 0. The expression on the left can be factored:
Explanation:
Answer:
The diagram represents two charges, q1 and q2, separated by a distance d. Which change would produce the greatest increase in the electrical force between the two charges? *
Explanation:
doubling charge q1, only