Answer:
The maximum emf that can be generated around the perimeter of a cell in this field is 
Explanation:
To solve this problem it is necessary to apply the concepts on maximum electromotive force.
For definition we know that

Where,
N= Number of turns of the coil
B = Magnetic field
Angular velocity
A = Cross-sectional Area
Angular velocity according kinematics equations is:



Replacing at the equation our values given we have that




Therefore the maximum emf that can be generated around the perimeter of a cell in this field is 
Answer:
66.98 db
Explanation:
We know that

L_T= Total signal level in db
n= number of sources
L_S= signal level from signal source.

= 66.98 db
Answer:
θ = 29.38°
Explanation:
The centripetal force is given by the formula;
F_c = F_n(sin θ) = mv²/r
Now, the vertical component of the normal force is; F_n(cos θ)
Now, this vertical component is also expressed as; F_n(cos θ) = mg
Thus, the slope is;
F_n(sin θ)/F_n(cos θ) = (mv²/r)/mg
tan θ = v²/rg
v² = rg(tan θ)
The initial speed will be gotten from the relation;
(v_o)² = μ_s(gr)
Plugging rg(tan θ) for (v_o)², we have;
μ_s(gr) = rg(tan θ)
rg will cancel out to give;
μ_s = (tan θ)
Thus, θ = tan^(-1) μ_s
μ_s is coefficient of static friction given as 0.563
θ = tan^(-1) 0.563
θ = 29.38°
first one is true, there's no net force acting on it thats greater than another or making it unbalanced, if there was the object would be in some kind of motion
All scientist use meters, that way scientist can share information across country without needing to convert the data.
3. is air resistance
4. The large rock
Answer: A is your answer i am sorry if i am wrong
Explanation:
he first PLCs were programmed with a technique that was based on relay logic wiring schematics. This eliminated the need to teach the electricians, technicians and engineers how to program a computer - but, this method has stuck and it is the most common technique for programming PLCs today.