Answer:
in pounds if would be 50.7 or 50.7063
Answer:
The unknown substance is Aluminum.
Explanation:
We'll begin by calculating the change in the temperature of substance. This can be obtained as follow:
Initial temperature (T₁) = 25 ⁰C
Final temperature (T₂) = 100 ⁰C
Change in temperature (ΔT) =?
ΔT = T₂ – T₁
ΔT = 100 – 25
ΔT = 75 ⁰C
Finally, we shall determine the specific heat capacity of the substance. This can be obtained as follow:
Change in temperature (ΔT) = 75 ⁰C
Mass of the substance (M) = 135 g
Heat (Q) gained = 9133 J
Specific heat capacity (C) of substance =?
Q = MCΔT
9133 = 135 × C × 75
9133 = 10125 × C
Divide both side by 10125
C = 9133 / 10125
C = 0.902 J/gºC
Thus, the specific heat capacity of substance is 0.902 J/gºC
Comparing the specific heat capacity (i.e 0.902 J/gºC) of substance to those given in the table above, we can see clearly that the unknown substance is aluminum.
Answer:
they stay shifted the same amount to the red
Explanation:
Redshift is given by

Where,
= Wavelength observed
= Wavelength emitted
Also
Transverse redshift is given by

v = Velocity of object
c = Speed of light = 
So, if the velocity is constant the redshift remains the same
Answer:
Explanation:
Initial separation of plate = d
final separation = 2d
The capacitance of the capacitor will reduce from C to C/2 because
capacitance = ε A / d
d is distance between plates.
As the batteries are disconnected , charge on the capacitor becomes fixed .
Initial charge on the capacitor
= Capacitance x potential difference
Q = C ΔV
Final charge will remain unchanged
Final charge = C ΔV
Final capacitance = C/2
Final potential difference = charge / capacitance
= C ΔV / C/2
= 2 ΔV
Potential difference is doubled after the pates are further separated.
Comparative investigation is a research method that makes comparison across different countries of the world. Limitation : data set in different countries may be defined differently. Benefit : the method is flexible.