Answer:
The potential difference is the drop in voltage that occurs across a resistor as current flows through it in a circuit, potential difference or voltage(V) = current (I) *resistance (R), or to abbrevate V = I*R. In this case, I = 5amps and R = 10 ohms, so V = 5 * 10 = 50volts
<span>it fairly is going to attain a speed of 24 m/s in a 2d, yet between t = 0 and t = a million, it fairly is not any longer vacationing at that speed, yet at slower speeds. it fairly is 12 meters. ?D = [ ( a?T^2 + 2?Tv_i ) ] / 2 the place: ?D = displacement a = acceleration ?T = elapsed time v_i = preliminary speed ?D = [ ( 24m/s^2 • 1s • 1s + 2 • 1s • 0m/s ) ] / 2 ?D = 24 / 2 ?D = 12m</span>
Answer:
B. The buoyant force on the copper block is greater than the buoyant force on the lead block.
Explanation:
Given;
mass of lead block, m₁ = 200 g = 0.2 kg
mass of copper block, m₂ = 200 g = 0.2 kg
density of water, ρ = 1 g/cm³
density of lead block, ρ₁ = 11.34 g/cm³
density of copper block, ρ₂ = 8.96 g/cm³
The buoyant force on each block is calculated as;

The buoyant force of lead block;

The buoyant force of copper block

Therefore, the buoyant force on the copper block is greater than the buoyant force on the lead block
Answer:
Length of the sides of the square loop is given by
s = √[(τ)/(NIB sin θ)]
Explanation:
The torque, τ, experienced by a square loop of area, A, with N number of turns around the loop and current of I flowing in the wire, with a magnetic field presence, B, and the plane of the loop tilted at angle θ to the x-axis, is given by
τ = (N)(I)(A)(B) sin θ
If everything else is given, the length of a side of the square loop, s, can be obtained from its Area, A.
A = s²
τ = (N)(I)(A)(B) sin θ
A = (τ)/(NIB sin θ)
s² = (τ)/(NIB sin θ)
s = √[(τ)/(NIB sin θ)]
In this question, τ = 0.076 N.m, I = 1.70 A
But we still need the following to obtain a numerical value for the length of a side of the square loop.
N = number of turnsof wire around the loop
B = magnetic field strength
θ = angle to which the plane of the loop is tilted, measured with respect to the x-axis.
Answer:
The charged particle follows a spiral path in a magnetic field.
Explanation:
A charge immersed in a region with an electric field experiences a force that acts along the same direction of the electric field. In particular:
- The force has the same direction as the electric field if the charge is positive
- The force has the opposite direction as the electric field if the charge is negative
Therefore, a charge moving in an electric field is accelerated along the direction of the electric field.
On the other hand, a charge in motion in a region with a magnetic field experiences a force that acts perpendicular to the direction of the field. This means that a charge in motion in a magnetic field will acquire a circular motion in the plane perpendicular to the direction of the magnetic field.
As a result, if the particle has also a original motion outside this plane, its final motion will consist of:
- A uniform motion along that direction, +
- A circular motion along the plane perpendicular to the field
So, the resultant motion of the particle will be a spiral path. So the correct answer is
The charged particle follows a spiral path in a magnetic field.