Answer:
21.3 V, 1.2 A
Explanation:
1.
These resistors are in series, so the net resistance is:
R = R₁ + R₂ + R₃
R = 20 + 30 + 45
R = 95
So the current is:
V = IR
45 = I (95)
I = 9/19
So the voltage drop across R₃ is:
V = IR
V = (9/19) (45)
V ≈ 21.3 V
2.
First, we need to find the equivalent resistance of R₂ and R₃, which are in parallel:
1/R₂₃ = 1/R₂ + 1/R₃
1/R₂₃ = 1/10 + 1/10
R₂₃ = 5
Now we find the overall resistance by adding the resistors in series:
R = R₁ + R₂₃ + R₄
R = 10 + 5 + 10
R = 25
So the current through R₁ is:
V = IR
30 = I (25)
I = 1.2 A
Answer:

Explanation:
I = Moment of inertia = 
m = Mass of two atoms = 2m = 
r = distance between axis and rotation mass
Moment of inertia of the system is given by

The distance between the atoms will be two times the distance between axis and rotation mass.

Therefore, the distance between the two atoms is 
Answer:
7.78x10^-8T
Explanation:
The Pointing Vector S is
S = (1/μ0) E × B
at any instant, where S, E, and B are vectors. Since E and B are always perpendicular in an EM wave,
S = (1/μ0) E B
where S, E and B are magnitudes. The average value of the Pointing Vector is
<S> = [1/(2 μ0)] E0 B0
where E0 and B0 are amplitudes. (This can be derived by finding the rms value of a sinusoidal wave over an integer number of wavelengths.)
Also at any instant,
E = c B
where E and B are magnitudes, so it must also be true at the instant of peak values
E0 = c B0
Substituting for E0,
<S> = [1/(2 μ0)] (c B0) B0 = [c/(2 μ0)] (B0)²
Solve for B0.
Bo = √ (0.724x2x4πx10^-7/ 3 x10^8)
= 7.79 x10 ^-8 T
Answer: Heat waves? I’m not %100 sure
A becomes positive, while b is now negative. Basically, electrons are negative particles. If they go to somewhere, they make the somewhere they go to negative.