1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bezzdna [24]
3 years ago
6

Which of the following is true in regard to a charged atom?

Physics
1 answer:
anzhelika [568]3 years ago
3 0
I believe a charged Atom is an ion. And that a charged atom possess it's charge due to the different number of electrons that it possess. Unlike an uncharged atom or neutral atom, a charged atom may possess more or less than the number of electrons found in an uncharged atom.
You might be interested in
How do reflection and refraction of waves affect communication?​
romanna [79]

Answer:

Reflection involves a change in direction of waves when they bounce off a barrier. Refraction of waves involves a change in the direction of waves as they pass from one medium to another.

5 0
3 years ago
Read 2 more answers
An object is dropped from a height of 75.0 m above ground level. (a) Determine the distance traveled during the first second. (b
lys-0071 [83]

Answer:

a)Distance traveled during the first second = 4.905 m.

b)Final velocity at which the object hits the ground = 38.36 m/s

c)Distance traveled during the last second of motion before hitting the ground = 33.45 m

Explanation:

a) We have equation of motion

             S = ut + 0.5at²

     Here u = 0, and a = g

              S = 0.5gt²

    Distance traveled during the first second ( t =1 )

              S = 0.5 x 9.81 x 1² = 4.905 m

   Distance traveled during the first second = 4.905 m.

b)  We have equation of motion

            v² = u² + 2as

      Here u = 0, s= 75 m and a = g

           v² = 0² + 2 x g x 75 = 150 x 9.81

           v = 38.36 m/s

      Final velocity at which the object hits the ground = 38.36 m/s

c) We have S = 0.5gt²

                   75 = 0.5 x 9.81 x t²

                    t = 3.91 s

   We need to find distance traveled last second

   That is

          S = 0.5 x 9.81 x 3.91² - 0.5 x 9.81 x 2.91² = 33.45 m

   Distance traveled during the last second of motion before hitting the ground = 33.45 m

       

3 0
3 years ago
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the maximum kinetic energy of the emitted p
jarptica [38.1K]

Answer:

1.76 eV

Explanation:

Maximum kinetic energy of the emitted photo electrons = energy of the photon- work function of the metal

K.E' = (hc/λ)-∅.................. Equation 1

Where K.E' = maximum kinetic energy of the emitted photo electrons, h = Planck's constant, c = speed, λ = wave length, ∅ = work function of the metal.

make ∅ the subject of the equation

∅ = (hc/λ)-K.E'.................. Equation 2

Given: h = 6.63×10⁻³⁴ J.s, c = 3×10⁸ m/s, λ = 400 nm = 400×10⁻⁹ m, K.E' = 1.1 eV = 1.1(1.602×10⁻¹⁹) J = 1.7622×10⁻¹⁹ J

Substitute into equation 2

∅ = [6.63×10⁻³⁴(3×10⁸)/400×10⁻⁹ ]-1.7622×10⁻¹⁹

∅ = (4.973×10⁻¹⁹)-(1.7622×10⁻¹⁹)

∅ = 3.21×10⁻¹⁹ J.

The maximum kinetic energy of the photo electrons when the wave length is 330 nm is

K.E' = [6.63×10⁻³⁴( 3×10⁸ )/330×10⁻⁹]-(3.21×10⁻¹⁹)

K.E' = (6.03×10⁻¹⁹)-(3.21×10⁻¹⁹)

K.E' = 2.82×10⁻¹⁹ J

K.E' = 2.82×10⁻¹⁹/1.602×10⁻¹⁹

K.E' = 1.76 eV

7 0
3 years ago
What is the resistance ofa wire made of a material with resistivity of 3.2 x 10^-8 Ω.m if its length is 2.5 m and its diameter i
Katarina [22]

R = 0.407Ω.

The resistance  R of a particular conductor is related to the resistivity ρ of the material by  the equation R = ρL/A, where ρ is the material resistivity, L is the length of the material and A is the cross-sectional area of ​​the material.

To calculate the resistance R of a wire made of a material with resistivity of 3.2x10⁻⁸Ω.m, the length of the wire is 2.5m and its diameter is 0.50mm.

We have to use the equation R = ρL/A but first we have to calculate the cross-sectional area of the wire which is a circle. So, the area of a circle is given by A = πr², with r = d/2. The cross-sectional area of the wire is A = πd²/4.  Then:

R =[(3.2x10⁻⁸Ω.m)(2.5m)]/[π(0.5x10⁻³m)²/4]

R = 8x10⁻⁸Ω.m²/1.96x10⁻⁷m²

R = 0.407Ω

5 0
3 years ago
Compare skater's total energy at point A and at point E?(disregard the friction)
White raven [17]

Answer:

c

Explanation:

because I've had this question before and got it right

7 0
3 years ago
Other questions:
  • A 3.92 cm tall object is placed in 31.3 cm in front of a convex mirror. The focal
    12·1 answer
  • A force of 10N propels a 350-g toy rocket upwards. The rocket initially starts from rest and the rocket motor burns for 0.1 s. W
    14·2 answers
  • The force on an object is F⃗ =−17j⃗ . For the vector v⃗ =2i⃗ +3j⃗ , find: (a) The component of F⃗ parallel to v⃗
    9·1 answer
  • It takes a car 1.75h to go from mile marker 10 to mile marker 115. What is the average speed of the car
    14·2 answers
  • Is a darter a consumer?
    13·1 answer
  • What drug is an illegal stimulant
    8·1 answer
  • 2. If a cyclist in the Tour de France traveled southwest a distance of 12,250 meters in one hour, what would the velocity of the
    13·1 answer
  • A steel railroad track has a length of 23 m when the temperature is 7◦C. What is the increase in the length of the rail on a hot
    15·1 answer
  • Students in physical education class must _____?
    8·1 answer
  • A helicopter's speed increases
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!