Answer:
b
Explanation:
because if you freeze somthing you do not gain heat you loss heat.
Answer: 5.41 V
Explanation:in order to explain this result we have to use the Ohm law given by:
ΔV=R*I where R is the resistance which is equal R= ρ*L/A . ρ is the resistivity, L the length of the wire and A is the cross section. I is the current.
Then we have
ΔV=ρ*L*I/A= 1.68 * 10^-8 Ωm*93.4 m*72.5A/2.1* 10^-5 m^2=5.41 V
Answer:
2200000 = 2.2E6 min for light from Proxima to reach earth
8.3 min from light sun to reach earth
2.2E6/8.3 = 2.56E5 times for light from Proxima
Proxima is about 256,000 times farther away than the sun
Since the sun is about 93,000,000 = 9.3E7 miles from earth
Proxima is then 9.3E7 * 2.56E5 = 2.4E13 miles away
Note - the speed of light is
3.00E8 m/s * 60 s/min / 1000 m/km = 1.8E7 km/min as given
Answer:
(i) The wavelength is 0.985 m
(ii) The frequency of the wave is 36.84 Hz
Explanation:
Given;
mass of the string, m = 0.0133 kg
tensional force on the string, T = 8.89 N
length of the string, L = 1.97 m
Velocity of the wave is:

(i) The wavelength:
Fourth harmonic of a string with two nodes, the wavelength is given as,
L = 2λ
λ = L/2
λ = 1.97 / 2
λ = 0.985 m
(ii) Frequency of the wave is:
v = fλ
f = v / λ
f = 36.29 / 0.985
f = 36.84 Hz
Answer:
mountains are limited in their theoretical height by several processes. First is isostasy: the bigger a mountain gets, the more it weighs down its tectonic plate, so it sinks lower. ... Bottom line: mountains can get taller than Mount Everest in earth gravity, like the Appalachians probably did—but not much taller.