1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
o-na [289]
3 years ago
14

Which term is used to describe water that is evaporated, polluted, or used by crops? A. degenerated B. consumptive C. controlled

D. processed
Physics
1 answer:
Mariana [72]3 years ago
8 0
The correct answer is (B) Consumptive.

Explanation:
"Consumptive use" is the term used in the field of Water Science to define "the <span>part of water withdrawn that is evaporated, given off by plants, used by crops, consumed by humans or livestock, or otherwise removed from the immediate water environment. It is also referred as water consumed." Hence the correct answer is (b) Consumptive.
</span>
You might be interested in
A rocket has landed on planet x, which has half the radius of earth. An astronaut onboard the rocket weighs twice as much on pla
Nastasia [14]

Answer:

Option (c) u0

Explanation:

The escape velocity has a formula as:

V = √(2gR)

Where V is the escape velocity,

g is the acceleration due to gravity

R is the radius of the earth.

Now, from the question, we were told that the escape velocity for the rocket taking off from earth is u0 i.e

V(earth) = u0

V(earth) = √(2gR)

u0 = √(2gR) => For the earth

Now, let us calculate the escape velocity for the rocket taking off from planet x. This is illustrated below below:

g(planet x) = 2g (earth) => since the weight of the astronaut is twice as much on planet x as on earth

R(planet x) = 1/2 R(earth) => planet x has half the radius of earth

V(planet x) =?

Applying the formula V = √(2gR), the escape velocity on planet x is obtained as follow:

V(planet x) = √(2g(x) x R(x))

V(planet x) = √(2 x 2g x 1/2R)

V(planet x) = √(2 x g x R)

V(planet x) = √(2gR)

The expression obtained for the escape velocity on planet x i.e V(planet x) = √(2gR), is exactly the same as that obtained for the earth i.e V(earth) = √(2gR)

Therefore,

V(planet x) = V(earth) = √(2gR)

But from the question, V(earth) is u0

Therefore,

V(planet x) = V(earth) = √(2gR) = u0

So, the escape velocity on planet x is u0

4 0
3 years ago
WILL GIVE BRAINLIEST!!!
Annette [7]

Answer:

Explanation:

Divergent Boundary

7 0
3 years ago
Read 2 more answers
A person has a gravitational force (weight) of 600 N on Earth. Suppose the mass of the Earth is double and the radius shrinks to
Alenkasestr [34]

Explanation:

that's impossible,the radius of the earth can't decrease when the mass doubles!

4 0
3 years ago
A slender rod is 90.0 cm long and has mass 0.120 kg. A small 0.0200 kg sphere is welded to one end of the rod, and a small 0.070
likoan [24]

Given Information:

length of slender rod = L = 90 cm = 0.90 m

mass of slender rod = m = 0.120 kg

mass of sphere welded to one end = m₁ = 0.0200 kg

mass of sphere welded to another end = m₂ = 0.0700 kg (typing error in the question it must be 0.0500 kg as given at the end of the question)

Required Information:

Linear speed of the 0.0500 kg sphere = v = ?

Answer:

Linear speed of the 0.0500 kg sphere = 1.55 m/s

Explanation:

The velocity of the sphere can by calculated using

ΔKE = ½Iω²

Where I is the moment of inertia of the whole setup ω is the speed and ΔKE is the change in kinetic energy

The moment of inertia of a rigid rod about center is given by

I = (1/12)mL²

The moment of inertia due to m₁ and m₂ is

I = (m₁+m₂)(L/2)²

L/2 means that the spheres are welded at both ends of slender rod whose length is L.

The overall moment of inertia becomes

I = (1/12)mL² + (m₁+m₂)(L/2)²

I = (1/12)0.120*(0.90)² + (0.0200+0.0500)(0.90/2)²

I = 0.0081 + 0.01417

I = 0.02227 kg.m²

The change in the potential energy is given by

ΔPE = m₁gh₁ + m₂gh₂

Where h₁ and h₂ are half of the length of slender rod

L/2 = 0.90/2 = 0.45 m

ΔPE = 0.0200*9.8*0.45 + 0.0500*9.8*-0.45

The negative sign is due to the fact that that m₂ is heavy and it would fall and the other sphere m₁ is lighter and it would will rise.

ΔPE = -0.1323 J

This potential energy is then converted into kinetic energy therefore,

ΔKE = ½Iω²

0.1323 = ½(0.02227)ω²

ω² = (2*0.1323)/0.02227

ω = √(2*0.1323)/0.02227

ω = 3.45 rad/s

The linear speed is

v = (L/2)ω

v = (0.90/2)*3.45

v = 1.55 m/s

Therefore, the linear speed of the 0.0500 kg sphere as its passes through its lowest point is 1.55 m/s.

8 0
3 years ago
How do you get rid of strep throat <br><br><br>if i eat ice cream will it make it better
masha68 [24]

Answer:

Go to a Doctor

Explanation:

7 0
3 years ago
Other questions:
  • How many excess electrons are on a ball with a charge of -1.4944 10-16 C?
    8·1 answer
  • Describe the sequence of events in the lithification of a sandstone
    5·2 answers
  • when a ball is dropped it is easy to see that earth exerts a force on it. why cant you tell that the ball exerts a force on it.
    7·1 answer
  • Ultraviolet rays from the sun are able to reach Earth's surface because A. They require air to travel through B. They have less
    8·1 answer
  • What would a physicist do to determine how tires affect the motion of a car?
    15·1 answer
  • Any energy transformation involves the loss of some energy as
    5·2 answers
  • The average 8-18 year old spends how many hours per day average in front of a screen doing little physical activity
    10·1 answer
  • Supposed an object is weighted with a spring balance, first in air then while totally immersed in water.The readings on the bala
    15·1 answer
  • I need help on this and the first person who will answer this correctly gets BRANLIST​
    14·1 answer
  • HELPPP PLEASE URGENT
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!