Answer:
12345
Explanation:
yan na po answer ko hehehe
Answer:
-20,000N
Explanation:
Force (N) = mass (kg) x acceleration (m/s²)
So,
Force = 2000 x -10
= -20,000N (Newtons)
At point E
- the kinetic energy of the rollercoaster is small compared to the potential energy
- the potential energy is greater than the kinetic energy
- the total energy is a mixture of potential and kinetic energy
<h3>What is the energy of the roller coaster at point E?</h3>
The energy of a roller coaster could either be potential energy, kinetic energy or a combination of both potential and kinetic energy.
Using analogies, the energy of the roller coaster at point E can be compared to a falling fruit from a tree which falls onto a pavement and is the rolling towards the floor. Point E can be compared to the midpoint of the fall of the fruit.
At point E
- the kinetic energy of the rollercoaster is small compared to the potential energy
- the potential energy is greater than the kinetic energy
- the total energy is a mixture of potential and kinetic energy
In conclusion, the energy of the rollercoaster at E is both Kinetic and potential energy,
Learn more about potential and kinetic energy at: brainly.com/question/18963960
#SPJ1
Answer:
The components of the moving frame is (8.07c, -2, 3, 9.493)
Solution:
As per the question:
Velocity of moving frame w.r.t original frame 0.85c
Point 'a' of an event in one reference frame corresponds to the (x, y, z, t) coordinates of the plane
a = (0, - 2, 3, 5)
Now, according the the question, the coordinates of moving frame, say (X, Y, Z, t'):
New coordinates are given by:
X =
X =
X =
Now,
Y = y = - 2
Z = z = 3
Now,
Answer:
THE RUBBER BALL
Explanation:
From the question we are told that
The mass of the rubber ball is
The initial speed of the rubber ball is
The final speed at which it bounces bank
The mass of the clay ball is
The initial speed of the clay ball is
The final speed of the clay ball is
Generally Impulse is mathematically represented as
where is the change in the linear momentum so
For the rubber is
=>
For the clay ball
=>
So from the above calculation the ball with the a higher magnitude of impulse is the rubber ball