1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ber [7]
3 years ago
7

A 4,000-km^2 watershed receives 102cm of precipitation in one

Engineering
1 answer:
Svetradugi [14.3K]3 years ago
5 0

Answer:

1) The change in storage of the catchment is 707676800 cubic meters.

2) The runoff coefficient of the catchment is 0.83.

Explanation:

The water budget equation of the catchment can be written as

P+Q_{in}=ET+\Delta Storage+Q_{out}+I

where

'P' is volume of  precipitation in the catchment =Area\times Precipitation

Q_{in} Is the water inflow

ET is loss of water due to evapo-transpiration

\Delta Storage is the change in storage of the catchment

Q_{out} is the outflow from the catchment

I is losses due to infiltration

Applying the values in the above equation and using the values on yearly basis (Time scale is taken as 1 year) we get

4000\times 10^{6}\times 1.02+0=0.40\times 4000\times 10^{6}+\Delta Storage+34.2\times 3600\times 24\times 365\times 5.5\times 10^{-9}\times 4000\times 10^{6}\times 3600\times 24\times 365

\therefore \Delta Storage=707676800m^3

Part b)

The runoff coefficient  C is determined as

C=\frac{P-I}{P}

where symbols have the usual meaning as explained earlier

\therefore C=\frac{102-5.5\times 10^{-7}\times 3600\times 24\times 365}{102}=0.83

You might be interested in
Câu 1: Tìm từ trong 2 câu thơ sau liên quan đến các từ: hình chiếu, tia chiếu, mặt phẳng chiếu.
xeze [42]

Explanation:

are bhai brainly aap english me questions kar ne ko hai

ye kon si bhasha hai ??????

4 0
2 years ago
A PMMA plate with a 25 mm (width) x 6.5 mm (thickness) cross-section has a contained crack of length 2c = 0.5 mm in the center o
victus00 [196]

Answer:

LAOD = 6669.86 N

Explanation:

Given data:

width= 25 mm = 25\times 10^{-3} m

thickness = 6.5 mm = 6.5\times 10^{-3} m

crack length 2c = 0.5 mm at centre of specimen

\sigma _{applied} =  1000 N/cross sectional area

stress intensity factor  =  k  will be

\sigma_{applied} = \frac{1000}{25\times 10^{-3}\times 6.5\times 10^{-3}}

                   = 6.154\times 10^{6} Pa

we know that

k =\sigma_{applied} (\sqrt{\pi C})

  =6.154\sqrt{\pi (2.5\times 10^{-04})}          [c =0.5/2 = 2.5*10^{-4}]

K = 0.1724 Mpa m^{1/2} for 1000 load

ifK_C = 1.15 Mpa m^{1/2} then load will be

Kc = \sigma _{frac}(\sqrt{\pi C})

1.15 MPa = \sigma _{frac}\times \sqrt{\pi (2.5\times 10^{-04})}

\sigma _{frac} = 41.04 MPa

load = \sigma _{frac}\times Area

load = 41.04 \times 10^6 \times 25\times 10^{-3}\times 6.5\times 10^{-3} N

LAOD = 6669.86 N

3 0
2 years ago
Consider a regenerative gas-turbine power plant with two stages of compression and two stages of expansion. The overall pressure
iris [78.8K]

Answer: the minimum mass flow rate of air required to generate a power output of 105 MW is 238.2 kg/s

Explanation:

from the T-S diagram, we get the overall pressure ratio of the cycle is 9

Calculate the pressure ratio in each stage of compression and expansion. P1/P2 = P4/P3  = √9 = 3

P5/P6 = P7/P8  = √9 =3  

get the properties of air from, "TABLE A-17 Ideal-gas properties of air", in the text book.

At temperature T1 =300K

Specific enthalpy of air h1 = 300.19 kJ/kg

Relative pressure pr1 = 1.3860  

At temperature T5 = 1200 K

Specific enthalpy h5 = 1277.79 kJ/kg

Relative pressure pr5 = 238  

Calculate the relative pressure at state 2

Pr2 = (P2/P1) Pr5

Pr2 =3 x 1.3860 = 4.158  

get the two values of relative pressure between which the relative pressure at state 2 lies and take the corresponding values of specific enthalpy from, "TABLE A-17 Ideal-gas properties of air", in the text book.  

Relative pressure pr = 4.153

The corresponding specific enthalpy h = 411.12 kJ/kg  

Relative pressure pr = 4.522

The corresponding specific enthalpy h = 421.26 kJ/kg  

Find the specific enthalpy of state 2 by the method of interpolation

(h2 - 411.12) / ( 421.26 - 411.12) =  

(4.158 - 4.153) / (4.522 - 4.153 )

h2 - 411.12 = (421.26 - 411.12) ((4.158 - 4.153) / (4.522 - 4.153))  

h2 - 411.12 = 0.137

h2 = 411.257kJ/kg  

Calculate the relative pressure at state 6.

Pr6 = (P6/P5) Pr5

Pr6 = 1/3 x 238 = 79.33  

Obtain the two values of relative pressure between which the relative pressure at state 6 lies and take the corresponding values of specific enthalpy from, "TABLE A-17 Ideal-gas properties of air", in the text book.  

Relative pressure Pr = 75.29

The corresponding specific enthalpy h = 932.93 kJ/kg  

Relative pressure pr = 82.05

The corresponding specific enthalpy h = 955.38 kJ/kg  

Find the specific enthalpy of state 6 by the method of interpolation.

(h6 - 932.93) / ( 955.38 - 932.93) =  

(79.33 - 75.29) / ( 82.05 - 75.29 )

(h6 - 932.93) = ( 955.38 - 932.93) ((79.33 - 75.29) / ( 82.05 - 75.29 )

h6 - 932.93 = 13.427

h6 = 946.357 kJ/kg

Calculate the total work input of the first and second stage compressors

(Wcomp)in = 2(h2 - h1 ) = 2( 411.257 - 300.19 )

= 222.134 kJ/kg  

Calculate the total work output of the first and second stage turbines.

(Wturb)out = 2(h5 - h6) = 2( 1277.79 - 946.357 )

= 662.866 kJ/kg  

Calculate the net work done

Wnet = (Wturb)out  - (Wcomp)in

= 662.866 - 222.134

= 440.732 kJ/kg  

Calculate the minimum mass flow rate of air required to generate a power output of 105 MW

W = m × Wnet

(105 x 10³) kW = m(440.732 kJ/kg)

m = (105 x 10³) / 440.732

m = 238.2 kg/s

therefore the minimum mass flow rate of air required to generate a power output of 105 MW is 238.2 kg/s

4 0
3 years ago
Which term represents an object that has a round or oval base and is connected at every point by lines at a corresponding point
raketka [301]

Answer:

it is a polyhedron

Explanation:

if I am wrong I am sorry

8 0
3 years ago
Read 2 more answers
stimate the maximum efficiency of an automobile engine that has a compression ratio of 5:1.0. Assume the engine operates accordi
Fed [463]

Answer:

Efficiency based on Otto cycle.

Effotto = 47.47%

Explanation:

Efficiency based on Otto cycle.

effotto = 1 – (V2 / V1)^γ-1

effotto = 1 – (1 / 5)^1.4 - 1

effotto = 47.47%

5 0
3 years ago
Other questions:
  • Effects of adding more insulation to a cylinder increases heat transfer area. a)-True b)-False
    13·1 answer
  • Calculate the value of ni for gallium arsenide (GaAs) at T = 300 K. The constant B = 3. 56 times 1014 9cm -3 K-3/2) and the band
    9·1 answer
  • Assume that price is an integer variable whose value is the price (in US currency) in cents of an item. Assuming the item is pai
    11·1 answer
  • What is the IMA of a fixed pulley ​
    7·2 answers
  • Wiring harnesses run
    12·1 answer
  • Air at atmospheric pressure and at 300K flows with a velocity of 1.5m/s over a flat plate. The transition from laminar to turbul
    13·1 answer
  • Under the normal sign convention, the distributed load on a beam is equal to the:_______A. The rate of change of the bending mom
    13·1 answer
  • The 5 ft wide gate ABC is hinged at C and contacts a smooth surface at A. If the specific weight of the water is 62.4 lb/ft3 , f
    8·1 answer
  • A coil consists of 200 turns of copper wire and have a cross-sectional area of 0.8 mmm square.The mean length per turn is 80 cm
    13·1 answer
  • The web page you created displays the time in the correct time zone for the user's location.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!