1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mart [117]
3 years ago
7

Jess kicks a soccer ball, and it rolls across the ground. The force diagram shows all the forces acting on the ball at the momen

t Jess kicks it. Which arrow represents a friction force?

Physics
2 answers:
neonofarm [45]3 years ago
4 0
Arrow at the left side pointing towards right side represents the frictional force as it always acts opposite to motion
Keith_Richards [23]3 years ago
4 0

Answer: the left arrow

Explanation:

Friction is a force that opposes the motion of an object. Friction is due to the contact between the surface of the object in motion and the surface on which the object is moving, and its direction is always opposite to the direction of motion of the object.

In this problem, we see that the object is moving towards the left: therefore, the friction must act towards the right, as shown by the left arrow.

You might be interested in
An inductor of 299 mH with a resistance of 51 Ω is connected to a power supply with a maximum voltage of 227 V and a frequency o
kramer

Answer:

The answer is 1.1A

Explanation:

See the attached file

6 0
3 years ago
State guy lussac law
tatuchka [14]

<span>The combined gas law has no official founder; it is simply the incorporation of the three laws that was discovered. The combined gas law is a gas law that combines Gay-Lussac’s Law, Boyle’s Law and Charle’s Law.  Boyle’s law states that pressure is inversely proportional with volume at constant temperature. Charle’s law states that volume is directly proportional with temperature at constant pressure. And Gay-Lussac’s law shows that pressure is directly proportional with temperature at constant volume. The combination of these laws known now as combined gas law gives the ratio between the product of pressure-volume and the temperature of the system is constant. Which gives PV/T=k(constant). When comparing a substance under different conditions, the combined gas law becomes P1V1/T1 = P2V2/T2.</span>

7 0
3 years ago
The half-life of the radioactive element beryllium-13 is 5 × 10-10 seconds, and half-life of the radioactive element beryllium-1
telo118 [61]
<h2>Answer: The half-life of beryllium-15 is 400 times greater than the half-life of beryllium-13.</h2>

Explanation:

The half-life h of a radioactive isotope refers to its decay period, which is the average lifetime of an atom before it disintegrates.

In this case, we are given the half life of two elements:

beryllium-13: h_{B-13}=5(10)^{-10}s=0.0000000005s

beryllium-15: h_{B-15}=2(10)^{-7}s=0.0000002s

As we can see, the half-life of beryllium-15 is greater than the half-life of beryllium-13, but how great?

We can find it out by the following expression:

h_{B-15}=X.h_{B-13}

Where X is the amount we want to find:

X=\frac{h_{B-15}}{h_{B-13}}

X=\frac{2(10)^{-7}s}{5(10)^{-10}s}

Finally:

X=400

Therefore:

The half-life of beryllium-15 is <u>400 times greater than</u> the half-life of beryllium-13.

8 0
3 years ago
Which of the following have the same density. number 26
marusya05 [52]

1 cubic cm is the same as 1 mL, so the answer would be C.

8 0
3 years ago
a bal is launched upward with a velocity of v0 from the edge of a cliff of height D. it reaches a maximum height of H above its
lilavasa [31]

Answer:

D/H =15

Explanation:

  • We can find first the peak height H, taking into consideration, that at the maximum height, the ball will reach momentarily to a stop.
  • At this point, we can find the value of H, applying the following kinematic equation:

       v_{f} ^{2} -v_{0} ^{2} = 2* g* H (1)

  • If vf=0, if we assume that the positive direction is upwards, we can find the value of H as follows:

       H = \frac{v_{0} ^{2} }{2*g} (2)

  • We can use the same equation, to find the value of D, as follows:

        v_{f} ^{2} -v_{1} ^{2} = 2* g* D (3)

  • In order to find v₁, we can use the same kinematic equation that we used to get H, but now, we know that v₀ = 0.
  • When we replace these values in (1), we find that  v₁ = -v₀.
  • Replacing in (3), we have:

        (4*v_{0})^{2} - (-v_{0}) ^{2}  = 2* g* D\\ \\ 15*v_{0}^{2}  = 2*g*D

  • Solving for  D:

       D = \frac{15*v_{0} ^{2} }{2*g}

  • From (2) we know that H can be expressed as follows:

       H = \frac{v_{0} ^{2} }{2*g}

  • ⇒ D = 15 * H

        \frac{D}{H} = 15

3 0
3 years ago
Other questions:
  • Specific heat depends on several factors. Pick the factor below that you suspect will not affect specific heat. composition
    10·1 answer
  • The refrigeration unit on an ice cream truck is rated at 35,500 Btu/hr. What is the amount of heat removed if is operates for 2.
    13·1 answer
  • A 1200 kg car is moving at 5.0 m/s east. it strikes an 1800 kg car at rest. the cars have an elastic collision and move in the e
    10·1 answer
  • How does the number of valence electrons in atoms of metalloids explain why metalloids are semiconductors?
    6·1 answer
  • Which best describes the relationship between the frequency, wavelength, and speed of a wave as the wave travels through differe
    5·1 answer
  • A cart moving at 2.7 m/s travels for 2 minutes, How far did it go?​
    6·1 answer
  • While traveling along a highway, a driver slows from 27 m/s to 13 m/s in 11 seconds. What is the automobile’s acceleration?
    6·1 answer
  • 2. A car is sitting at the top of a hill that is 14 m high. The car has a mass of 53 kg. The car has
    7·1 answer
  • An electromagnetic wave with frequency 65.0Hz travels in an insulating magnetic material that has dielectric constant 3.64 and r
    7·1 answer
  • A small disk of radius R1 is mounted coaxially with a larger disk of radius R2. The disks are securely fastened to each other an
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!