It would take roughly 3 seconds.
When the capacitor is connected to the voltage, a charge Q is stored on its plates. Calling
the capacitance of the capacitor in air, the charge Q, the capacitance
and the voltage (
) are related by
(1)
when the source is disconnected the charge Q remains on the capacitor.
When the space between the plates is filled with mica, the capacitance of the capacitor increases by a factor 5.4 (the permittivity of the mica compared to that of the air):

this is the new capacitance. Since the charge Q on the plates remains the same, by using eq. (1) we can find the new voltage across the capacitor:

And since
, substituting into the previous equation, we find:

Answer:
C 0.85 j/g*k
Explanation:
The specific heat capacity of a material is given by:

where
Q is the amount of heat supplied to the object
m is the mass of the object
is the increase in temperature of the object
For the object in this problem, we have
m = 117 g is the mass
Q = 1200 J is the heat supplied
is the increase in temperature
Substituting into the formula, we find the specific heat:
