Answer:
The time is 5.71 sec.
Explanation:
Given that,
Acceleration 
Initial velocity = 24.0 m/s
We need to calculate the time
Using equation of motion
v = u+at[/tex]
Where, v = final velocity
u = inital velocity
t = time
a = acceleration
Put the value into the formula



Hence, The time is 5.71 sec.
Answer: Conditions for equilibrium require that the sum of all external forces acting on the body is zero (first condition of equilibrium), and the sum of all external torques from external forces is zero (second condition of equilibrium). These two conditions must be simultaneously satisfied in equilibrium
Explanation: Hope this helped
Answer:
AM broadcasts occur on North American airwaves in the medium wave frequency range of 525 to 1705 kHz (known as the “standard broadcast band”). The band was expanded in the 1990s by adding nine channels from 1605 to 1705 kHz.
Answer:
14.7 m/s
Explanation:
Since the motion of the ball is a uniformly accelerated motion, we can find the initial speed by using the following suvat equation:
where
s is the vertical displacement
u is the initial velocity
t is the time
a is the acceleration
In this problem, we have:
s = 0 (because at the end of the motion, the ball returns to its original position)
u = ?
is the acceleration of gravity (negative because it is downward)
is the total time of flight
Solving for u, we find the initial velocity of the ball:

Answer:
<em>Because </em><em>of </em><em>the </em><em>given </em><em>stranded</em><em> </em><em>wires </em><em>is </em><em>that </em><em>it's </em><em>thinner </em><em>there </em><em>are </em><em>even </em><em>more </em><em>air </em><em>gaps </em><em>and </em><em>a </em><em>greater </em><em>surface</em><em> </em><em>area </em><em>in </em><em>the </em><em>individual</em><em> </em><em>stranded</em><em> wires</em><em> </em><em>then </em><em>therefore </em><em>it </em><em>carries </em><em>less </em><em>current </em><em>than </em><em>similar </em><em>solid </em><em>wires </em><em>can </em><em>with</em><em> </em><em>each</em><em> </em><em>type </em><em>of </em><em>wire </em><em>,</em><em> insulations</em><em> </em><em>technologies </em><em>can </em><em>greatly</em><em> </em><em>assist </em><em> </em><em>in </em><em>reducing</em><em> </em><em>power </em><em>dissipation</em><em>.</em>