Answer:
The final temperature is equal to 240 K or -33.15°C
Explanation:
Given that,
Initial temperature of the gas, T₁ = 47°C = 320 K
Initial pressure, P₁ = 140 kpa
Final pressure, P₂ = 105 kpa
We need to find the final temperature if the volume remains constant. The relation between temperature and pressure is given by :

or

So, the final temperature is equal to 240 K or -33.15°C.
Answer:
The answer is
<h2>0.95 atm</h2>
Explanation:
To solve the question we use the following conversion
That's
1 mmHg
0.0013 atm
So we have
If 1 mmHg
0.0013 atm
Then 732 mmHg will be
732 × 0.0013 atm
We have the final answer as
<h3>0.95 atm</h3>
Hope this helps you
This problem could be solved easily using the Henderson-Hasselbach equation used for preparing buffer solutions. The equation is written below:
pH = pKa + log[(salt/acid]
Where salt represents the molarity of salt (sodium lactate), while acid is the molarity of acid (lactic acid).
Moles of salt = 1 mol/L * 25 mL * 1 L/1000 mL = 0.025 moles salt
Moles of acid = 1 mol/L* 60 mL * 1 L/1000 mL = 0.06 moles acid
Total Volume = (25 mL + 60 mL)*(1 L/1000 mL) = 0.085 L
Molarity of salt = 0.025 mol/0.085 L = 0.29412 M
Molarity of acid = 0.06 mol/0.085 L = 0.70588 M
Thus,
pH = 3.86 + log(0.29412/0.70588)
pH = 3.48
Answer:
chemical
Explanation:
because heat is being taken to the egg