The formula for speed is s = d/t, where s is speed, d is distance, and t is time. The formula can be applied to all objects, including cars, to find their speed.
The magnitude of the E-field decreases as the square of the distance from the charge, just like gravity.
Location ' x ' is √(2² + 3²) = √13 m from the charge.
Location ' y ' is √ [ (-3)² + (-2)² ] = √13 m from the charge.
The magnitude of the E-field is the same at both locations.
The direction is also the same at both locations ... it points toward the origin.
The alpha particle is emitted at 4235 m/s
Explanation:
We can use the law of conservation of momentum to solve the problem: the total momentum of the original nucleus must be equal to the total momentum after the alpha particle has been emitted. Therefore:
where:
is the mass of the original nucleus
is the initial velocity of the nucleus
is the mass of the alpha particle
is the final velocity of the alpha particle
is the mass of the daughter nucleus
is the final velocity of the nucleus
Solving for
, we find the final velocity of the alpha particle:

Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
Answer:
His kinetic energy increases, potential energy decreases
The sum of kinetic and potential energy is a constant at any instant before he comes to rest.
Explanation:
Snowboarder is starting from a height and moving to the down direction. As he moves down his velocity increases, we know that kinetic energy is given by the expression
, so as he moves his kinetic energy increases.
When the snowboarder is starting his potential energy is maximum(Potential energy = mgh), as he comes down his potential energy decreases.
Based on this we can conclude that the sum of potential energy and kinetic energy is a constant at any instant for a snowboarder before he comes to rest.
mgh+
= Constant
No, according to many pictures taken in space, the moon is white. However, on rare occasions, the moon appears blue.
Hope this helps! ☺♥