Explanation:
The pressure exerted by a column of liquid of height h and density ρ is given by the hydrostatic pressure equation p = ρgh, where g is the gravitational acceleration
Answer:
750 J
Explanation:
lets convert mass into kg first , 150 /1000 = 0.15 kg
kinetic energy = =
Answer:
t_{out} = t_{in}, t_{out} =
Explanation:
This in a relative velocity exercise in one dimension,
let's start with the swimmer going downstream
its speed is
The subscripts are s for the swimmer, r for the river and g for the Earth
with the velocity constant we can use the relations of uniform motion
= D /
D = v_{sg1} t_{out}
now let's analyze when the swimmer turns around and returns to the starting point
= D /
D = v_{sg 2} t_{in}
with the distance is the same we can equalize
t_{out} = t_{in}
t_{out} = t_{in}
This must be the answer since the return time is known. If you want to delete this time
t_{in}= D /
we substitute
t_{out} = \frac{v_s - v_r}{v_s+v_r} ()
t_{out} =
Complete Question
A small metal sphere, carrying a net charge q1=−2μC, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of q2= -8μC and mass 1.50g, is projected toward q1. When the two spheres are 0.80m apart, q2 is moving toward q1 with speed 20ms−1. Assume that the two spheres can be treated as point charges. You can ignore the force of gravity.The speed of q2 when the spheres are 0.400m apart is.
Answer:
The value
Explanation:
From the question we are told that
The charge on the first sphere is
The charge on the second sphere is
The mass of the second charge is
The distance apart is
The speed of the second sphere is
Generally the total energy possessed by when and are separated by is mathematically represented
Here KE is the kinetic energy which is mathematically represented as
substituting value
And U is the potential energy which is mathematically represented as
substituting values
So
Generally the total energy possessed by when and are separated by is mathematically represented
Here is the kinetic energy which is mathematically represented as
substituting value
And is the potential energy which is mathematically represented as
substituting values
From the law of energy conservation
So