1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pav-90 [236]
3 years ago
5

A disc of mass m slides with negligible friction along a flat surface with a velocity v. The disc strikes a wall head-on and bou

nces back in the opposite direction with a kinetic energy one fourth of its initial kinetic energy. What is the final velocity of the disc? Group of answer choices -v/2 -v/4 v/4 v/2 -v
Physics
1 answer:
qwelly [4]3 years ago
3 0

Answer:

-v/2

Explanation:

Given that:

  • a disc of mass m
  • Collides with the wall going through a sliding motion on on the plane smooth surface.
  • Upon rebounding from the wall its kinetic energy becomes one-fourth of the initial kinetic energy before collision.

<u>We know, kinetic energy is given as:</u>

KE_i=\frac{1}{2}. m.v^2

consider this to be the initial kinetic energy of the body.

<u>Now after collision:</u>

KE_f=\frac{1}{4}\times KE_i

KE_f=\frac{1}{4} \times \frac{1}{2}\times m.v^2

Considering that the mass of the body remains constant before and after collision.

KE_f=\frac{1}{2}\times m.(\frac{v}{2})^2

Therefore the velocity of the body after collision will become half of the initial velocity but its direction is also reversed which can be denoted by a negative sign.

You might be interested in
An astronaut inside a spacecraft, which protects her from harmful radiation, is orbiting a black hole at a distance of 120 km fr
mestny [16]

An astronaut inside a spacecraft, which protects her from harmful radiation, is orbiting a black hole at a distance of 120 km from its center. The black hole is 5.00 times the mass of the sun and has a Schwarzschild radius of 15.0 km. The astronaut is positioned inside the spaceship such that one of her 0.030 kg ears is 6.0 cm farther from the black hole than the center of mass of the spacecraft and the other ear is 6.0 cm closer.

What is the tension between her ears?

Would the astronaut find it difficult to keep from being torn apart by the gravitational forces?

Answer:

The tension between the ears = 2.07 KN

The astronaut will find it difficult to keep and will eventually be in trouble because the tension is now greater compared to the tension in the human tissues.

Explanation:

Given that:

Orbital radius of the spacecraft (R) = 120 Km = 120 × 10³ m

Mass of the black hole (m) = 5 \ * (M \ _{sun})

where : M_{sun} = 1.99*10^{33} \ kg

Then; we have:

 m = 5*(1.99*10^{30} \ kg ) \\ = 9.95*10^{30} kg

Schwarzchild radius of the black hole

r - 15.0 km

Mass of each ear m_{ear} = 0.030 \ kg

Farther distance between one ear and the black hole (d) = 6.0 cm

= 0.06 m

Closer distance between the other ear and the black home is (d) 6.0 cm

= 0.6 cm

NOW, If we assume that the tension force should be T; then definitely the two ears will posses the same angular velocity .

The net force on the ear closer to the black hole will be:

\frac{GMm_{ear} }{(R-d)}- T = m_{ear} (R -  d) \omega^2

\frac{GMm_{ear} }{(R-d)^2}- \frac{T}{(R-d)} = m_{ear} \omega^2 \ ----> \ (1)

The net force on the ear farther to the black hole is :

\frac{GMm_{ear} }{(R+d)}- T = m_{ear} (R +  d) \omega^2

\frac{GMm_{ear} }{(R+d)^2}- \frac{T}{(R+d)} = m_{ear} \omega^2 \ ----> \ (2)

Equating equation (1) and (2) & therefore making (T) the subject of the formula; we have:

T = \frac{3GMm_{ear}d}{R^3}

T = \frac{3(6.67*10^{-11}N.m^2/kg^2)(1.95*10^{30}kg)(0.03kg)(0.06m)}{(120*10^3m)^3}

T = 2073.9 N\\T = 2.07 KN

The tension between the ears = 2.07 KN

The astronaut will find it difficult to keep and will eventually be in trouble because the tension is now greater compared to the tension in the human tissues.

3 0
4 years ago
What does the column that an element is in tell you?​
Mumz [18]

Answer:

The column number tells us the amount of valence electron the element has

8 0
3 years ago
A 0.600 kg block is attached to a spring with spring constant 15 N/m. While the block is sitting at rest, a student hits it with
gulaghasi [49]

Answer:

8.8 cm

31.422 cm/s

Explanation:

m = Mass of block = 0.6 kg

k = Spring constant = 15 N/m

x = Compression of spring

v = Velocity of block

A = Amplitude

As the energy of the system is conserved we have

\dfrac{1}{2}mv^2=\dfrac{1}{2}kA^2\\\Rightarrow A=\sqrt{\dfrac{mv^2}{k}}\\\Rightarrow A=\sqrt{\dfrac{0.6\times 0.44^2}{15}}\\\Rightarrow A=0.088\ m\\\Rightarrow A=8.8\ cm

Amplitude of the oscillations is 8.8 cm

At x = 0.7 A

Again, as the energy of the system is conserved we have

\dfrac{1}{2}kA^2=\dfrac{1}{2}mv^2+\dfrac{1}{2}kx^2\\\Rightarrow v=\sqrt{\dfrac{k(A^2-x^2)}{m}}\\\Rightarrow v=\sqrt{\dfrac{15(0.088^2-(0.7\times 0.088)^2)}{0.6}}\\\Rightarrow v=0.31422\ m/s

The block's speed is 31.422 cm/s

4 0
3 years ago
In order to model the motion of an extinct ape, scientists measure its hand and arm bones. From shoulder to wrist, the arm bones
wel

Answer:

0.37 m

Explanation:

Let the shoulder be the origin.

The center of mass of the arm bones is 0.60 m/2 = 0.30 m and the center of mass of the hand bones is 0.10 m/2 = 0.05 m since they are modeled as straight rods with uniform density and the center of mass of a rod is x = L/2 where L is the length of the rod.

The center of mass y = (m₁y₁ + m₂y₂)/(m₁ + m₂) where m₁ = mass of arm bones = 4.0 kg, y₁ = distance center of mass of arm bones  from shoulder = 0.30 m, m₂ = mass of hand bones = 1.0 kg and y₂ = distance of center of mass hand bones from shoulder = x₁ + distance of center of hand bones from wrist = 0.60 m + 0.05 m = 0.65 m

Substituting these into the equation for the center of mass, we have

y = (m₁y₁ + m₂y₂)/(m₁ + m₂)

y = (4.0 kg × 0.30 m + 1.0 kg × 0.65 m)/(4.0 kg + 1.0 kg)

y = (1.20 kgm + 0.65 kgm)/5.0 kg

y = 1.85 kgm/5.0 kg

y =  0.37 m

The distance of the center of mass from the shoulder is thus y = 0.37 m

7 0
3 years ago
Write an equation that expresses the first law of thermodynamics in terms of heat and work.
OleMash [197]

Answer:

Heat Input = Work Output       (at 100% efficiency)

ΔQ = ΔW

(you cannot get something for nothing)

3 0
2 years ago
Other questions:
  • The tape in a videotape cassette has a total
    14·1 answer
  • When must scientific theories be changed?
    12·2 answers
  • An object at 20∘c absorbs 25.0 j of heat. what is the change in entropy δs of the object?
    13·2 answers
  • calculate minimum number of incident photons per area and of the minimum dose needed to visualize an object of 1 mm squared usin
    11·1 answer
  • How much heat is needed to vaporize 25.0 kg of water (Ly - 540 kcal/kg)?
    12·1 answer
  • Why do rocks on the ocean floor form a patter of magnetized strpes?
    7·2 answers
  • A high school physics teacher also happens to be the junior hockey team coach. During a break at practice, the coach asks two pl
    11·1 answer
  • The table below describes some features of methods used to generate electricity. What is method 3?
    6·1 answer
  • Clouds are formed when water vapor in the atmosphere becomes a liquid and condenses. Condensation is a result of the difference
    15·1 answer
  • Explain how you would find the volume of a regular-shaped cube in comparison to an irregular shaped object such as a rock.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!