Answer:
Mass of the oil drop, 
Explanation:
Potential difference between the plates, V = 400 V
Separation between plates, d = 1.3 cm = 0.013 m
If the charge carried by the oil drop is that of six electrons, we need to find the mass of the oil drop. It can be calculated by equation electric force and the gravitational force as :


, e is the charge on electron
E is the electric field, 


So, the mass of the oil drop is
. Hence, this is the required solution.
A, convection, is your answer
Answer:
<h3>
The area of second coil is ≅ 0.025 
</h3>
Explanation:
Given :
No. of turns in the first coil 
No. of turns in the second coil 
Area of first coil 
According to the law of electromagnetic induction,
Induced emf =
Where
magnetic flux.
Since given in question emf of both coil is same so we compare above equation.




Therefore, the area of second coil is ≅ 0.025 
Answer:
W= -2.5 (p₁*0.0012) joules
Explanation:
Given that p₀= initial pressure, p₁=final pressure, Vi= initial volume=0 and Vf=final volume= 6/5 liters where p₁=p₀ then
In adiabatic compression, work done by mixture during compression is
W=
where f= final volume and i =initial volume, p=pressure
p can be written as p=K/V^γ where K=p₀Vi^γ =p₁Vf^γ
W= 
W= K/1-γ ( 1/Vf^γ-1 - 1/Vi^γ-1)
W=1/1-γ (p₁Vf-p₀Vi)
W= 1/1-1.40 (p₁*6/5 -p₀*0)
W= -2.5 (p₁*6/5*0.001) changing liters to m³
W= -2.5 (p₁*0.0012) joules