Answer:
Explanation:
Brownian motion is a random (irregular) motion of particles e.g smoke particle. The set up in the diagram can be used to observe the motion of smoke.
1. The apparatus used are:
A is a source of light
B is a converging lens
C is a glass smoke cell
D is a microscope
2. The uses of the apparatus are:
A - produces the light required to so as to see clearly the movement of the particles.
B - converges the rays of light from the source to the smoke cell.
C - is made of glass and used for encamping the smoke particles so as not to mix with air.
D - is used for the clear view or observation or study of the motion of the smoke particles in the cell.
Answer:
he electron is directly transferred to NADP+ to NADPH, but electron flow is used to generate a proton gradient for ATP synthesis. Electron is not directly transferred to ATP
NADP= Nicotin amide adenine dinucleotide phosphate
NADPH =Nicotinamide adenine dinucleotide phosphate is the reduced form of NADP
therefore electron is not directly transferred to ATP
Answer: A. The total displacement divided by the time and C. The slope of the ant's displacement vs. time graph.
Explanation:
Hi! The question seems incomplete, but I found the options on the internt:
A. The total displacement divided by the time.
B. The slope of the ant's acceleration vs. time graph.
C. The slope of the ant's displacement vs. time graph.
D. The average acceleration divided by the time.
Now, since we know the ant is travelling at a constant speed, its average velocity
will be expressed by the following equation:

Where:
is the ant's total displacement
is the time it took to the ant to travel to the kitchen
Hence one of the correct options is: A. The total displacement divided by the time
On the other hand, this can be expressed by a displacement vs. time graph graph, where the slope of that line leads to the equation written above. So, the other correct option is:
C. The slope of the ant's displacement vs. time graph.
Explanation:
The supermassive black holes that the Event Horizon Telescope is observing are far larger; Sagittarius A*, at the center of the Milky Way, is about 4.3 million times the mass of our sun and has a diameter of about 7.9 million miles (12.7 million km), while M87 at the heart of the Virgo A galaxy is about 6 billion solar ..