26.5, I’m not sure if it’s right but 1060/40 gets that
<span>it is meant to distinguish the number of polyatomic ions from the number of atoms in a given polyatomic ion. an example is Ca(NO3)2</span>
Answer:
1) 883 kgm2
2) 532 kgm2
3) 2.99 rad/s
4) 944 J
5) 6.87 m/s2
6) 1.8 rad/s
Explanation:
1)Suppose the spinning platform disk is solid with a uniform distributed mass. Then its moments of inertia is:

If we treat the person as a point mass, then the total moment of inertia of the system about the center of the disk when the person stands on the rim of the disk:

2) Similarly, he total moment of inertia of the system about the center of the disk when the person stands at the final location 2/3 of the way toward the center of the disk (1/3 of the radius from the center):

3) Since there's no external force, we can apply the law of momentum conservation to calculate the angular velocity at R/3 from the center:



4)Kinetic energy before:

Kinetic energy after:

So the change in kinetic energy is: 2374 - 1430 = 944 J
5) 
6) If the person now walks back to the rim of the disk, then his final angular speed would be back to the original, which is 1.8 rad/s due to conservation of angular momentum.
Answer:
![B_T=2.0*10^-5[-\hat{i}+\hat{j}]T](https://tex.z-dn.net/?f=B_T%3D2.0%2A10%5E-5%5B-%5Chat%7Bi%7D%2B%5Chat%7Bj%7D%5DT)
Explanation:
To find the magnitude of the magnetic field, you use the following formula for the calculation of the magnetic field generated by a current in a wire:

μo: magnetic permeability of vacuum = 4π*10^-7 T/A
I: current = 6.0 A
r: distance to the wire in which magnetic field is measured
In this case, you have four wires at corners of a square of length 9.0cm = 0.09m
You calculate the magnetic field in one corner. Then, you have to sum the contribution of all magnetic field generated by the other three wires, in the other corners. Furthermore, you have to take into account the direction of such magnetic fields. The direction of the magnetic field is given by the right-hand side rule.
If you assume that the magnetic field is measured in the up-right corner of the square, the wire to the left generates a magnetic field (in the corner in which you measure B) with direction upward (+ j), the wire down (down-right) generates a magnetic field with direction to the left (- i) and the third wire generates a magnetic field with a direction that is 45° over the horizontal in the left direction (you can notice that in the image attached below). The total magnetic field will be:
![B_T=B_1+B_2+B_3\\\\B_{T}=\frac{\mu_o I_1}{2\pi r_1}\hat{j}-\frac{\mu_o I_2}{2\pi r_2}\hat{i}+\frac{\mu_o I_3}{2\pi r_3}[-cos45\hat{i}+sin45\hat{j}]](https://tex.z-dn.net/?f=B_T%3DB_1%2BB_2%2BB_3%5C%5C%5C%5CB_%7BT%7D%3D%5Cfrac%7B%5Cmu_o%20I_1%7D%7B2%5Cpi%20r_1%7D%5Chat%7Bj%7D-%5Cfrac%7B%5Cmu_o%20I_2%7D%7B2%5Cpi%20r_2%7D%5Chat%7Bi%7D%2B%5Cfrac%7B%5Cmu_o%20I_3%7D%7B2%5Cpi%20r_3%7D%5B-cos45%5Chat%7Bi%7D%2Bsin45%5Chat%7Bj%7D%5D)
I1 = I2 = I3 = 6.0A
r1 = 0.09m
r2 = 0.09m

Then you have:
![B_T=\frac{\mu_o I}{2\pi}[(-\frac{1}{r_2}-\frac{cos45}{r_3})\hat{i}+(\frac{1}{r_1}+\frac{sin45}{r_3})\hat{j}}]\\\\B_T=\frac{(4\pi*10^{-7}T/A)(6.0A)}{2\pi}[(-\frac{1}{0.09m}-\frac{cos45}{0.127m})\hat{i}+(\frac{1}{0.09m}+\frac{sin45}{0.127m})]\\\\B_T=\frac{(4\pi*10^{-7}T/A)(6.0A)}{2\pi}[-16.67\hat{i}+16.67\hat{j}]\\\\B_T=2.0*10^-5[-\hat{i}+\hat{j}]T](https://tex.z-dn.net/?f=B_T%3D%5Cfrac%7B%5Cmu_o%20I%7D%7B2%5Cpi%7D%5B%28-%5Cfrac%7B1%7D%7Br_2%7D-%5Cfrac%7Bcos45%7D%7Br_3%7D%29%5Chat%7Bi%7D%2B%28%5Cfrac%7B1%7D%7Br_1%7D%2B%5Cfrac%7Bsin45%7D%7Br_3%7D%29%5Chat%7Bj%7D%7D%5D%5C%5C%5C%5CB_T%3D%5Cfrac%7B%284%5Cpi%2A10%5E%7B-7%7DT%2FA%29%286.0A%29%7D%7B2%5Cpi%7D%5B%28-%5Cfrac%7B1%7D%7B0.09m%7D-%5Cfrac%7Bcos45%7D%7B0.127m%7D%29%5Chat%7Bi%7D%2B%28%5Cfrac%7B1%7D%7B0.09m%7D%2B%5Cfrac%7Bsin45%7D%7B0.127m%7D%29%5D%5C%5C%5C%5CB_T%3D%5Cfrac%7B%284%5Cpi%2A10%5E%7B-7%7DT%2FA%29%286.0A%29%7D%7B2%5Cpi%7D%5B-16.67%5Chat%7Bi%7D%2B16.67%5Chat%7Bj%7D%5D%5C%5C%5C%5CB_T%3D2.0%2A10%5E-5%5B-%5Chat%7Bi%7D%2B%5Chat%7Bj%7D%5DT)
In statistics there are different types of distributions, like rectangular, or Poisson, A normal distribution is bellshaped