The three major types of faults are Normal, Reverse and Strike-slip faults.
Answer: FALSE
Answer:
The answer is Relative plenitude alludes to the amount of a specific isotope is available in a given measure of test.
Explanation:
The 'relative plenitude' of an isotope implies the level of that specific isotope that happens in nature. Most components are comprised of a blend of isotopes. The total of the rates of the particular isotopes must indicate 100%. The relative nuclear mass is the weighted normal of the isotopic masses. The percent plenitude of every sort of sweets reveals to you what number of every sort of Aufbau there are in each 100 CANDIES. Percent wealth is additionally relative plenitude. This is only a method for giving us a photo on which kind exists all the more every now and again.
The answer for the following questions is explained below.
Explanation:
The two variables that affect kinetic energy are:
- mass and
- velocity
- velocity - The faster an object moves,the more the kinetic energy it has.
- mass - Kinetic energy increases as mass increases
The kinetic energy of an object depends on both its mass and its velocity
Kinetic energy increases as mass increases
For example,think about rolling a bowling ball and a golf ball down a bowling lane at same velocity
Here,the bowling ball has more mass than the golf ball
Therefore you use more energy to roll the bowling ball than to roll the golf ball
The bowling ball is more likely to knock down the pins because it has more kinetic energy than the golf ball
The masses of CO and CO2 are 90.55g and 100−90.55=9.45 g respectively.
<h3>Total mass.</h3>
Let the mixture has 100g as total mass.
The number of moles of CO is 2890.55=3.234.
The number of moles of CO2 is 449.45=0.215.
The mole fraction of CO is 3.234+0.2153.234=0.938.
The mole fraction of CO2 is 1−0.938=0.062.
The partial pressure of CO is the product of the mole fraction of CO and the total pressure.
It is 0.938×1=0.938 atm.
The partial pressure of carbon dioxide is 0.062×1=0.042 atm.
The expression for the equilibrium constant is:
Kp=PCO2PCO2=0.062(0.938)2=14.19
Δng=2−1=1
Kc=Kp(RT)−Δn=14.19×(0.0821×1127)−1=0.153.
To learn more about equilibrium constant visit the link
brainly.com/question/15118952
#SPJ4