Hello!
The half-life is the time of half-disintegration, it is the time in which half of the atoms of an isotope disintegrate.
We have the following data:
mo (initial mass) = 53.3 mg
m (final mass after time T) = ? (in mg)
x (number of periods elapsed) = ?
P (Half-life) = 10.0 minutes
T (Elapsed time for sample reduction) = 25.9 minutes
Let's find the number of periods elapsed (x), let us see:
Now, let's find the final mass (m) of this isotope after the elapsed time, let's see:
I Hope this helps, greetings ... DexteR! =)
A liquid becoming a gas. For instance water (liquid) turns into steam (gas).
The molarity of solution made by dissolving 15.20g of i2 in 1.33 mol of diethyl ether (CH3CH2)2O is =0.6M
calculation
molarity =moles of solute/ Kg of the solvent
mole of the solute (i2) = mass /molar mass
the molar mass of i2 = 126.9 x2 = 253.8 g/mol
moles is therefore= 15.2 g/253.8 g/mol = 0.06 moles
calculate the Kg of solvent (CH3CH2)2O
mass = moles x molar mass
molar mass of (CH3CH2)2O= 74 g/mol
mass is therefore = 1.33 moles x 74 g/mol = 98.42 grams
in Kg = 98.42 /1000 =0.09842 Kg
molarity is therefore = 0.06/0.09842 = 0.6 M
Explanation:
When a solid substance is dissolved in a liquid such as water, the intermolecular forces of attraction between the molecules in the solid substance are overcome and they exist as ions in the solution. Hence the answer is 2.
Answer:
C. fluorine (F) and chlorine (Cl)
D. arsenic (As) and antimony (Sb)
Explanation:
In the periodic table , all the elements are arranged according to the atomic number ,
and the elements are placed in groups and periods ,
The elements with similar chemical and physical properties are placed in a common group .
The elements present in the same group have the same number of valence electrons in the valence shell .
Hence , from the given options ,
fluorine (F) and chlorine (Cl) belongs to group 17 with 7 valence electrons in the outermost shell .
arsenic (As) and antimony (Sb) belong to group 15 with 3 valence electrons in the outermost shell .