(a) Force between the two charges
The electrostatic force between the two charges is given by:

where k is the Coulomb's constant, q1 and q2 the two charges, r their separation.
In this problem:



Substituting into the equation, we find

(b) direction of particle q2
Particle q2 wants to move in the direction of the force acting on it. The direction of the force depends on the relative sign of the two charges: like charges attract each other, opposite charges repel each other. In this case, the two charges are both positive, so they repel each other and q2 tends to move away from particle q1.
The particle with sharp ends have the slowest rate of deposition
Answer: Option C
<u>Explanation:</u>
As per aerosol physics, deposition is a process where aerosol particles accumulate or settle on solid surfaces. Thereby, it reduces the concentration of particles in the air. Deposition velocity (rate of deposition) defines from F = vc, where v is deposition rate, F denotes flux density and c refers concentration.
Deposition velocity is slowest for particles of intermediate-sized particles because the frictional force offers resistance to the flow. Density is directly proportional to the deposition rate so clearly shows that high-density particles settle faster. Due to friction, round and large-sized particles deposit faster than oval/flattened sediments.
Answer:
It can do work on an object by moving it or changing it.
Explanation:
Brainliest?
Answer:
a=0.212 m/s²
Explanation:
Given that
q= 10⁻⁹ C
m = 5 x 10⁻⁹ kg
Magnetic filed ,B= 0.003 T
Speed ,V= 500 m/s
θ= 45°
Lets take acceleration of the mass is a m/s²
The force on the charge due to magnetic filed B
F= q V B sinθ
Also F= m a ( from Newton's law)
By balancing these above two forces
m a= q V B sinθ



a=0.212 m/s²