Answer:
![p[H+] = 10.042](https://tex.z-dn.net/?f=p%5BH%2B%5D%20%3D%2010.042)
Explanation:
As we know that
......eq (1)
we will calculate the pH of OH- and then we will calculate the pH of H+
So p[OH-] ![= - log [1.10 * 10^{-4}]](https://tex.z-dn.net/?f=%3D%20-%20log%20%5B1.10%20%2A%2010%5E%7B-4%7D%5D)
Solving the right side of the equation, we get
p[OH-]
![= - [-3.958]\\= 3.958](https://tex.z-dn.net/?f=%3D%20-%20%5B-3.958%5D%5C%5C%3D%203.958)
Now we know that
![pKw = 14.0](https://tex.z-dn.net/?f=pKw%20%3D%2014.0)
Substituting the value of pOH in the above equation, we get -
![14.0 = p[H+] + 3.958\\p[H+] = 14 - 3.958\\p[H+] = 10.042](https://tex.z-dn.net/?f=14.0%20%3D%20p%5BH%2B%5D%20%2B%203.958%5C%5Cp%5BH%2B%5D%20%3D%2014%20-%203.958%5C%5Cp%5BH%2B%5D%20%3D%2010.042)
Thank you for posting your question here brainly. Based on the problem mentioned above the largest mass that water molecule could have using other isotopes is <span>24 amu. Below is the solution, I hope the answers helps.
</span><span>T2_18O = 24</span>
Answer:
The object at 50°C will have a higher kinetic energy.
Explanation:
Temperature is a measure of the average kinetic energy of the particles in an object. As you introduce more energy into the system (e.g. heat the object), the particles on average move faster because they have more kinetic energy.