(A)energy lost in the lever due to friction
(C)
visual estimation of height of the beanbag
(E)position of the fulcrum for the lever affecting transfer of energy
Answer:
The distance it has traveled is 3,050 m and the magnitude of its displacement is 650 m north.
Explanation:
Distance refers to the length between any two points in space, while displacement refers to the distance from a start position to an end position regardless of the path.
In other words, distance refers to how much space an object travels during its movement; is the quantity moved. It is also said to be the sum of the distances traveled. The distance traveled by a mobile is the length of its trajectory and it is a scalar quantity. In this case, the distance is calculated as:
1850 m + 1200 m= 3,050 m
Displacement refers to the distance and direction of the final position from the initial position of an object. The displacement effected is a vector quantity. The vector representing the displacement has its origin in the initial position, its end in the final position, and its module is the distance in a straight line between the initial and final positions. That is, when expressing the displacement it is done in terms of the magnitude with its respective unit of measurement and the direction because the displacement is a vector type quantity. Mathematically, the displacement (Δd) is calculated as:
Δd= df - di
where df is the final position and di is the initial position of the object.
In this case, the displacement is calculated as:
1850 m - 1200 m= 650 m
Since the distance to the north is greater, the direction of travel will be to the north.
<u><em>The distance it has traveled is 3,050 m and the magnitude of its displacement is 650 m north.</em></u>
Answer:

cubic metre or 1e-9
Explanation:
•By division. Number of cubic millimetre divided(/) by 1000000000, equal(=): Number of cubic metre.
•By multiplication. 83 mm3(s) * 1.0E-9 = 8.3E-8 m3(s)
Since power = work done/time, 60= work done/120, work done = 120*60 = 7200. So,work done = 7200N (Newton).
I'm not sure if you're supposed to convert the seconds to time.
Answer:
B. the stars to come back to the same positions in the sky.
Explanation:
In fact, the solar day is equivalent to more than a rotation, because when the point has turned completely, it is not, as it should, in the same position with respect to the Sun.
The reason for this is that while performing the rotation, the Earth simultaneously moved following its orbit around the Sun.
When the reference point completed its rotation, the Earth already moved almost 2,500,000 km., So that to see the Sun again it will be necessary to turn a little more.
Solar day is more than a rotation. The sidereal or sidereal day, commonly used by astronomers, is also based on the rotation of the Earth; but in this case a distant star is taken as a reference (sidereal comes from the Latin sidus which means "star").